

River Architect Wiki

Please refer to the Installation section to learn how to install, update, and launch River Architect.

River Architect is an `open-access, peer-reviewed (Journal
SoftwareX) <https://doi.org/10.1016/j.softx.2020.100438>`__ and
Python3-based software for the GIS-based planning of habitat enhancing
river design features regarding their lifespans, parametric
characteristics, optimum placement in the terrain, and ecological
benefits. The main graphical user interface (GUI) provides modules for
generating lifespan and design maps, terrain modification
(terraforming), assessment of digital elevation models (DEM), habitat
assets including fish stranding risk, and project cost-benefits.

River Architect invites to analyses and modifications of the longevity
and ecological quality of riverscapes. Different planning bases
(“conditions”) can be easily created using an introductory module called
GetStarted. Lifespan, Morphology
(Terraforming) and Ecohydraulic assessments can then be created
based on the Conditions, including the creation of project plans and
cost tables with a Project Maker module.

Lifespan maps indicate the expected longevity of
restoration features as a function of terrain change, morphological
characteristics, and 2D hydrodynamic modeling results. Design maps
are a side product of lifespan and design mapping
and indicate required feature dimensions for stability, such as the
minimum required size of angular boulders to avoid their mobilization
during floods (more information in Schwindt et
al.2019 [https://www.sciencedirect.com/science/article/pii/S0301479718312751]).
Best lifespan maps result from the comparison of lifespan and design
maps of multiple restoration features and assign features with the
highest longevity to each pixel of a raster. Thus, the Max
Lifespan module assess optimum features as a function
of highest lifespans among comparable feature groups such as
terraforming or vegetation planting species.

Morphology (Terraforming) includes routines to Modify
Terrain for river restoration purposes. Currently,
two terrain modification algorithms are implemented: (1) Threshold
value-based terrain modifications in terms of
grading or widening / broaden
rivers for riparian forest
establishment; and (2) River Builder for the creation
of synthetic river valley. A Volume Assessment
module can compare an original (pre-project or pre-terraforming
application) and a modified DEM (“with implementation” or post-feature
application) to determine required earth movement (terraforming volumes)
works.

Ecohydraulics assessments include the evaluation of the ecohydraulic
state and connectivity of riverscapes. The Habitat Area
(Seasonal Habitat Area Calculator) module applies user-defined flows
(discharges) for the spatial evaluation of the habitat suitability index
(HSI) in terms of Seasonal Habitat Area (SHArea). The hydraulic
habitat suitability results from 2D hydrodynamic numerical model outputs
of flow depth and velocity. Also, a “cover” option can be used to assess
ecohydraulic effects of cobble, boulder, vegetation, and streamwood. The
Stranding Risk module provides insights into the
connection of wetted areas on floodplains and how these may be improved
to enhance the survivorship of fry / juvenile fish.

The Project Maker module creates preliminary
construction plans and evaluates the costs for gain in usable habitat
for target fish species and lifestages. A unit cost workbook provides
relevant costs and the gain in usable habitat area results from the
SHArC module.

A set of Tools provides Python console scripts that are
under development and will be implemented in future versions of the
River Architect GUI.

River Architect represents a comprehensive tool for state-of-the-art
planning of ecologic river modifications. The integrated application of
River Architect to habitat enhancing project planning is illustrated
in the following flowchart. The modules and tool-scripts can also be
individually applied for other purposes than suggested in the flowchart.

[image: flowchart]
Fig. 1 flowchart

The procedure of project design following the flowchart involves the
following steps:

	Generate a terrain elevation model (DEM).

	Determine relevant discharges for 2D hydrodynamic modeling:

	At least three annual discharges describing the “most of the
time” - situation of the considered river for habitat evaluation
assessments. River Architect’s Tools contain scripts for
generating flow duration curves from gaging station data.

	At least three flood discharges against which potential
restoration features have to
withstand (determine lifespan intersects).

	Run a 2D hydrodynamic model (steady) with all determined discharges
to generate hydraulic snap-shots of the river.

	Create a Condition using the
GetStarted module. The Condition should
include GeoTIFFs of the initial (existing or pre-project) river
state:

	Detrended digital elevation model (DEM);

	Flow depth and velocity for multiple discharges Rasters from 2D
hydrodynamic modeling (see Signposts);

	Substrate map (dmean for metric or dmean_ft for U.S.
customary units); relevant methods are described in Detert et
al. (2018) [http://www.sciencedirect.com/science/article/pii/S1001627918300350];
Stähly et
al. (2017) [https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HY.1943-7900.0001286];
and [Jackson et al. (2013)];

	Datasets that can be used to assess design feature stability,
such as side channel design
criteria;

	Topographic change Rasters (Topographic Change Detection or DEM
differencing according to Wyrick and Pasternack
2016 [https://onlinelibrary.wiley.com/doi/full/10.1002/esp.3854]);

	Depth to water table Raster (d2w);

	Morphological unit Raster (see Wyrick and Pasternack
(2014) [http://www.sciencedirect.com/science/article/pii/S0169555X14000099]).

	Apply the LifespanDesign module to framework
(terraforming) features.

	Lifespan and Design maps, as well as expert assessment, serve for
the identification of relevant framework (terraforming)
features.

	Iterative terraforming (if relevant):

	Use the ModifyTerrain module for creating
synthetic river valley with River Builder; or
apply threshold value-based terrain
grading or broadening of the
river bed. Please note that
both routines require post-processing with computer-aided design
(translation into real-world coordinates and/or edge smoothing).

	Re-compile the flow depth and velocity maps (re-run 2D model)
with the modified DEM.

	Verify the suitability of the modified DEM (e.g., barrier height
to ensure flood safety and habitat suitability with the SHArC
module); if the verification show weaknesses adapt the
terraforming and re-compile the flow depth and velocity maps
until terraforming is satisfactory.

	Use the VolumeAssessment module (Morphology tab) to compare
pre- (initial) and post-project (modified) DEMs for determining
required excavation and fill volumes.

	Apply the LifespanDesign module to vegetation
plantings and (other)
bioengineering features based on
the terraformed DEM (or the original / initial DEM if no
terraforming applies).

	Use the MaxLifespan module to identify best
performing (highest lifespan) vegetation
plantings and (other)
bioengineering features.

	If the soils are too coarse (i.e., the capillarity is not high
enough to enable plant root growth), apply the connectivity feature
“incorporate fine sediment in
soils”.

	If gravel augmentation methods are applicable: Consecutively apply
the LifespanDesign and
MaxLifespan modules to connectivity
features to foster
self-sustaining, artificially created ecomorphological patterns
within the terraforming process. If gravel is added in-stream,
re-run the numerical model for the assessment of gravel
stability with the
LifespanDesign module and the combined habitat
suitability with the
SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module
to compare the Seasonal Habitat Area
(SHArea) before and after enhancement of
Physical Habitats for target fish species
(lifestages).

	Use the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]
to assess the “existing” (pre-project) and “with implementation”
(post-project) habitat suitability in terms of annually usable
habitat area (SHArea).

	Use the ProjectMaker to calculate costs, the net gain in SHArea,
and their ratio as a metric defining the project trade-off.

The working principles of the LifespanDesign,
MaxLifespan, ModifyTerrain,
VolumeAssessment,
SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC], and
ProjectMaker [https://github.com/RiverArchitect/RA_wiki/ProjectMaker]
modules are explained on their own Wiki pages. The differentiation
between terraforming
(framework), vegetation
plantings and other
bioengineering, and
connectivity features is
described within the LifespanDesign Wiki.
The Installation Wiki pages describe the proper installation, file
organization and environment of River Architect.

Installation

	Install River Architect

	Update River Architect

	Launch River Architect

	Prepare file structure

	Program environment setup and batchfile modification

	Requirements and dependencies

	Logfiles

[bookmark: started]

River Architect applies on ArcGIS Pro’s arcpy package and needs to be executed with ArcGIS Pro’s conda environment (C:\Program Files\ArcGIS\Pro\bin\Python\scripts\propy.bat). The requirements section provides more details and installation hints for external packages.
River Architect is designed as an external application rather than a python package, but its modules can be imported as packages for external use (see the Alternative Run sections in the module Wikis).

Installation with Git Bash/GUI[bookmark: git_install_ra]

We recommend downloading and updating River Architect using Git Bash [https://git-scm.com/downloads] (or Git GUI). Alternatively, River Architect can be downloaded as zip file. However, updates are tricky when River Architect is downloaded as zip file.

Git Bash

GitHub provides detailed descriptions and standard procedures to work with their repositories (read more [https://help.github.com/en/articles/cloning-a-repository]). The following “recipe” guides through the first time installation (cloning) of River Architect:

	Open Git Bash

	Type cd "D:/Target/Directory/" to change to the target installation directory (recommended: cd "D:/Python/RiverArchitect/"). If the directory does not exist, it can be created in the system explorer (right-click in empty space > New > > Folder).

	Clone the repository: git clone https://github.com/RiverArchitect/program

Done. Close Git Bash and start working with River Architect.

Git GUI

For using Git GUI, open Git GUI and choose Clone Existing Repository. Enter the Source Location: https://github.com/RiverArchitect/program, and the Target Directory: D:/Python/RiverArchitect (or any other directory, but ensure that the directory does not exist). Click Clone. Done.

Update with Git Bash/GUI (re- pull)[bookmark: update_ra]

Currently, Git Bash (or Git GUI) are the only options to update local copies of River Architect. Before updating River Architect, we recommend to save any files and Conditions produced with River Architect externally (create a save copy).

Git Bash

Open Git Bash and do the following:

	Go to the local River Architect installation directory: cd "D:/Python/RiverArchitect/program/" (or wherever River Architect was cloned).

	Check the current status: git status

	Pull changes: git pull

Please note that merge errors may occur when changes were made in the local copy of River Architect. In this case, Git Bash will guide through the manual merge process.
If you modified template workbooks (Fish.xlsx or threshold_values.xlsx): Create a .gitignore [https://git-scm.com/docs/gitignore] file in the /RiverArchitect/ directory. Open the .gitignore file with a text editor and enter the following:

/LifespanDesign/.templates/threshold_values.xlsx
/.site_packages/templates/Fish.xlsx

Save the .gitignore file and close the text editor. Now git pull will no longer overwrite Fish.xlsx and threshold_values.xlsx.

Git GUI

Open Git Bash and open D:/Python/RiverArchitect from the Open Recent Repository list (or wherever River Architect is installed). If not listed, click on Open Existing Repository and select the River Architect installation directory. Then:

	Click on Rescan.

	Click on the Remote drop-down menu > Fetch from > origin.

	Click on the Merge drop-down menu > Local Merge.

Launch River Architect[bookmark: launch_ra]

To start using River Architect:

	Right-click on DRIVE:\path\to\...\RiverArchitect\Start_River_Architect.bat and click on Edit.

	In the Start_River_Architect.batchfile, ensure that the Python path is correctly defined according to the installed version of ArcGIS: call EDIT>>"%PROGRAMFILES%\ArcGIS\Pro\bin\Python\Scripts\propy"<<"%cd%\master_gui.py". For more information about running standalone Python scripts in ArcGIS Pro’s conda environment, read their descriptions [https://pro.arcgis.com/en/pro-app/arcpy/get-started/using-conda-with-arcgis-pro.htm].

	Save and close Start_River_Architect.bat.

	Double-click on DRIVE:\path\to\...\RiverArchitect\Start_River_Architect.bat to start River Architect.

	Create a Condition on the Welcome (Get Started) tab.

	Analyze and create ecohydraulic paradises for Physical Habitats prefered by target (fish) species with sustainable river design features using lifespan maps [https://www.sciencedirect.com/science/article/pii/S2215016119300913?via%3Dihub].

Hint: The Quick GUIde sections in the module Wikis provide straight-forward application guidance.

River Architect starts in a GUI that is stored in master_gui.py. Alternatively, the modules can be individually launched by double-clicking on the LAUNCH_Windows_x64.bat in the module folders (not recommended and may be abandoned in future versions).

[image: ragui]

Package structure, requirements and logfiles

File structure[bookmark: structure]

The main directory (/RiverArchitect/) contains the program launcher named Start_River_Architect.bat and the Python3 file master_gui.py. The River Architect modules are located in sub-folders. The master folder (/RiverArchitect/) includes the following files and directories (the full list of all files for developers is available here):

	.sitepackages
Contains adapted third-party Python packages and own packages

	openpyxl
Contains a modified version of the openpyxl package (version 2.5.2) adapted for River Architect

	riverpy	
Particular python scripts with recurring routines and classes that are used in multiple modules.

	cDefinitions.py contains inter-module information of reach and feature keywords.

	cFeatures.py contains river design features classes with pointers to parameters and threshold values.

	cFish.py contains the class that reads characteristic species and lifestage data from riverpy/templates/Fish.xlsx.

	cFlows.py contains classes for creating flow duration curves and interpolating the annual/seasonal flow durations of 2D-modeled discharges.

	cGravel.py contains subfeatures of the Gravel augmentation-feature in cFeatures.

	cInputOutput.py contains workbook (.xlsx) read and write routines.

	cInterpolator.py provides routines for interpolating data between exact data points (x and y).

	cLogger.py contains the Logger() class that specifies the appearance of logging messages.

	cMakeTables.py make habitat evaluation workbook tables (.xlsx format).

	cMapper.py contains mapping routines (see Mapping Wiki).

	cPlants.py contains subfeatures of the Plantings-feature in cFeatures and the ModifyTerrain module.

	cReachManager.py processes reach information and reach-wise terrain change (volume differences).

	cThresholdDirector.py provides the ThresholdDirector() class for reading threshold values from the “thresholds.xlsx” workbook.

	config.py contains global parameter definitions and pointers to workbooks.

	fGlobal.py provides functions that are required in this module and the other modules in several classes.

	

	templates
contains global template files (content will be enriched in future versions)

	00_Flows contains templates for flow (discharge) analyses.

	01_Conditions contains Condition folders with parameter Rasters. The condition name begins with a 4-digit year number (e.g., 2018), optionally followed by a 3-characters reach ID (e.g., xyz) and a feature layer indicator (e.g., lyr10 for terraforming features [https://github.com/RiverArchitect/RA_wiki/Signposts]). The syllables are separated by an underscore. The process of defining of reaches is explained in the Signposts [https://github.com/RiverArchitect/RA_wiki/Signposts] and the ModifyTerrain Wiki [https://github.com/RiverArchitect/RA_wiki/ModifyTerrain].

	02_Maps contains a map templates subfolder that is copied by River Architect’s modules for processed conditions (e.g., 02_Maps/CONDITION/) for Mapping of Rasters and Shapefiles. The following templates and folders may be modified:

	symbology\ contains a standard symbology layer file (.lyrx) for partially logarithmic lifespan classification

	river_template.aprx is the standard ArcGIS Pro project file, where developers recommend to adapt background image (layer) connections.

	Module (folder): RiverArchitect/StrandingRisk for stranding risk analyses of restoration efforts.

	Output directory where Stranding Risk module outputs are saved.

	connect_gui.py is a standalone script that creates the graphical user interface (GUI) for running the Stranding Risk module.

	cConnectivityAnalysis.py provides methods for calculating stranding risk metrics.

	cGraph.py contains graphic representation routines for habitat connectivity analyses.

	Module (folder): RiverArchitect/GetStarted prepare input Conditions from scratch or existing conditions.

	.cache folder occurs temporarily when the module is executed.

	.templates folder should not be modified and contains the welcome screen imagery.

	cConditionCreator.py contains a managing class for creating and populating Conditions.

	cDetrendedDEM.py provides routines for generating detrended DEM Rasters.

	cMakeInp.py provides routines for creating input files (.inp) for lifespan mapping.

	cMorphUnit.py provides routines for calculating instream morphological units (Wyrick and Pasternack 2014 [https://www.sciencedirect.com/science/article/pii/S0169555X14000099]).

	cWaterLevel.py provides routines for calculating depth to water table Rasters.

	fSubCondition.py contains routines for creating a spatial subset of an existing Condition.

	popup_py contain popup window classes guiding through the creation and population of Conditions.

	welcome_gui.py contains the Get Started tab source code.

	Module (folder): RiverArchitect/LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] for Lifespan and Design analyses of restoration features [https://github.com/RiverArchitect/RA_wiki/LifespanDesign].

	Output folder with sub-folders for Rasters from individual module runs.

	.cache folder occurs temporarily when the module is executed.

	.templates folder should not be modified and contains input (*.inp) files; if required, the module includes routines for changing the input files.

	cLifespanDesignAnalysis.py contains a GIS-based functional core for processing Raster files.

	cParameters.py contains the parameter input core with pointers to Rasters and Raster names.

	cReadInpLifespan.py contains classes that read input data from *.inp files.

	feature_analysis.py coordinates class and function calls.

	lifespan_design_gui.py is a standalone script that creates the graphical user interface (GUI) for running the LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] module.

	Module (folder): RiverArchitect/MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan] for maximum lifespan assessment of feature groups (concurring features) [https://github.com/RiverArchitect/RA_wiki/MaxLifespan]

	Output folder with sub-folders for Layouts, Maps and Rasters from individual module runs.

	.cache folder occurs temporarily when the module is executed.

	.templates folder contains additional Rasters, which are required by this module; other Rasters are loaded from 01_Conditions.

	action_gui.py is a standalone script that creates the graphical user interface (GUI) for running the MaxLifespan module.

	action_planner.py coordinates class instantiations and function calls.

	cActionAssessment.py contains the GIS-based functional core that identifies optimum lifespans and associated features by processing lifespan/design Raster and shape files.

	cFeatureActions.py contains pointers to river restoration feature data in the LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] module.

	cReadActionInput.py contains functions for reading *.inp files from the .templates folder.

	Module (folder): RiverArchitect/ModifyTerrain [https://github.com/RiverArchitect/RA_wiki/ModifyTerrain] performs half-automated terrain modifications [https://github.com/RiverArchitect/RA_wiki/ModifyTerrain]

	Input folder containing optional modified DEMs for volume difference assessment.

	Output folder with sub-folders Rasters from individual module runs.

	RiverBuilder folder contains original River Builder code (riverbuilder.r) and input files, as well as help messages.

	.cache folder occurs when the module is executed.

	.templates folder contains the reach-defining workbook computation_extents.xlsx.

	cModifyTerrain.py contains GIS-based functional core for modifying DEM Rasters with threshold values (grading and widening).

	cRiverBuilder.py contains routines for launching River Builder.

	cRiverBuilderConstruct.py contains routines for creating input files for River Builder.

	modify_terrain_gui.py is a standalone script that creates the graphical user interface (GUI) for running the ModifyTerrain [https://github.com/RiverArchitect/RA_wiki/ModifyTerrain] module.

	sub_gui_rb.py contains the GUI for creating River Builder input files.

	Module (folder): RiverArchitect/SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] creates Habitat Suitability Index Rasters/maps and quantifies annually usable habitat area for target fish species and user-defined ranges of discharges [https://github.com/RiverArchitect/RA_wiki/SHArC].

	CHSI contains subfolders with composite habitat suitability index Rasters for pre- and post-project conditions.

	HSI contains subfolders with habitat suitability index Rasters for pre- and post-project conditions.

	SHArea contains result workbooks with SHArea values for examined conditions. The Rasters subfolder contains the associated composite habitat suitability Rasters.

	.cache folder occurs temporarily when the module is executed.

	.templates folder contains spreadsheet templates for the quantification of annually usable habitat area and the definition of fish species, lifestages, and associated habitat suitability curves.

	cHSI.py contains classes to calculate composite habitat suitability Rasters, hydraulic habitat suitability Rasters and interpolating the annual flow duration of considered discharges.

	sharc_gui.py contains the class of this module.

	sub_gui_covhhsi.py opens a new GUI window to create cover habitat suitability Rasters.

	sub_gui_hhsi.py opens a new GUI window to create hydraulic habitat suitability Rasters and determine associated annual flow duration.

	Module (folder): RiverArchitect/ProjectMaker [https://github.com/RiverArchitect/RA_wiki/ProjectMaker] applies on results from MaxLifespan and SHArC, as well as manual inputs to calculate project cost-benefit metrics [https://github.com/RiverArchitect/RA_wiki/ProjectMaker].

	.cache folder occurs temporarily when the module is executed.

	.templates folder contains a template folder tree and template workbooks with unit cost tables, as well as sample application data that illustrate potential results of the module.

	cSHArC.py applies SHArC results, in particular cHSI Rasters for calculating SHArea in the project area.

	project_maker_gui.py contains the class of this module.

	s20_plantings_delineation.py applies LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] and MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan] for assessing the most suitable vegetation plantings within the project area.

	s21_plantings_stabilization.py applies LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] and MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan] outputs as well as user-defined input parameters for mapping nature-based engineering features required to stabilize vulnerable vegetation plantings.

	s30_terrain_stabilization.py applies LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] and MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan] outputs to stabilize terraforming features.

	s40_compare_wua.py applies on SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] cHSI Rasters used in cSHArC.py for assessing the annually usable habitat area for a target fish species and lifestage within the project area.

	LAUNCH_Windows_x64.bat is a batchfile that runs project_maker_gui.py on Windows x64.

	Module (folder): RiverArchitect/VolumeAssessment calculates excavation / fill volumes of terraforming features.

	Output folder for calculation results.

	.cache folder occurs when the module is executed.

	.templates folder contains volume_template.xlsx.

	cVolumeAssessment.py contains GIS-based functional core for calculating volumes using an ArcGIS “3D” extension.

	volume_gui.py is a standalone script that creates the graphical user interface (GUI) for running the VolumeAssessment module

	Folder: Tools [https://github.com/RiverArchitect/RA_wiki/Tools] applies on results from MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan] and SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC], as well as manual inputs to calculate project cost-benefit metrics.

	.cache folder occurs temporarily when the module is executed.

	.templates folder contains a template workbooks for multiple purposes.

	Products folder contains results of any script in this folder.

	cHydraulic.py contains a class with routines for calculating cross-section-averaged flow characteristics.

	cInputOutput.py contains classes required for reading and writing data, as well as calculation progress logging.

	cPoolRiffle.py provides routines for designing self-sustaining pool-riffle channels.

	fTools.py is a set of functions used by other Python applications within this folder.

	make_annual_peak.py prepares required input data for statistic flow analyses and with the U.S. Army Corps of Engineers’ HEC-SPP [https://www.hec.usace.army.mil/software/hec-ssp/] software.

	make_annual_flow_duration.py - deprecated (will be removed) creates flow duration curves (annual averages) for the assessment of SHArea (deprecated). A more sophisticated version of this function is integrated in the SHArC module with options to limit flow duration assessments to fish-lifestage seasons.

	morphology_designer.py creates design tables for self-sustaining pool-riffle channels (uses cHydraulic.py and cPoolRiffle.py).

	run_make_….bat are a batchfiles that run make_….py on Windows.

	run_morphology_designer.bat is a batchfiles that runs morphology_designer.py.

Program environment setup and batchfile modification[bookmark: raenv]

The package is designed for an ArcGIS Pro’s Python3 conda environment. Before launching the River Architect package for the first time, the batchfiles may require adaptions for the system environment. On Windows only (Linux is not yet available because of arcpy issues - we are working on it), set the batch file environment as follows:

	Right-click on Start_River_Architect.bat and choose Edit (with Texteditor) or Open with … and choose a Texteditor software.

	Check, and if necessary, replace the path to the good python interpreter:

Default: "%PROGRAMFILES%\ArcGIS\Pro\bin\Python\Scripts\propy"

Note: Future versions of River Architect’s will require gdal and rasterio. Therefore, developers recommend to create a new conda environment and to install these packages to that new environment:

	Open “ArcGIS Pro” and click on the Project pane in the upper left corner

	Click on the Python tab

	Click on the Manage Environments button and on Clone default (or manually copy the default environment) to, for example, C:\Python\envs\arcgispro-py3-cust

	When cloning was successful, restart ArcGIS Pro and go back to the Project > Python tab and click on Add Packages

	Search for, and install gdal (lib-gdal also works) and rasterio

	For starting River Architect from an IDE, set the new conda environment as interpreter (e.g., C:\Python\envs\arcgispro-py3-cust\python.exe). The new environment may also be used in the batchfiles.

	The ArcGIS Pro website [https://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-conda.htm] provides more information on how to install Python packages.

	Save LAUNCH_River_ArchitectWINx64.bat and close Texteditor.

	Set default application to open input file type documents (*.inp files):

Go to folder ...\River Architect\LifespanDesign\.templates\ and right-click on mapping.inp to access the menu Open with Choose any text editor, such as Notepad, Texteditor or Notepad++ and click OK.

There is no standard easy way to import ArcGIS’ arcpy package in Python running on UNIX platforms (Apple or Linux). Future versions of River Architect aim at using other packages for geodata processing, which will also run on UNIX platforms (we are currently experimenting with gdal and qgis.core).

After editing the batch files, launch River Architect by double-clicking on Start_River_Architect.bat.

Requirements and dependencies[bookmark: req]

Python packages

The execution of River Architect requires the following packages, which are part of the standard ArcGIS Pro - Python3 distribution:

	arcpy

	argparse

	glob

	logging

	openpyxl

	os

	shutil

	subprocess (not mandatory, also works without this package)

	tkinter

Additional packages:

	rpy2 and the R language: The Morphology\ModifyTerrain [https://github.com/RiverArchitect/RA_wiki/ModifyTerrain] module requires an installation of the R language [https://www.r-project.org/] to automate the production of river topographic data via the RiverBuilder [http://pasternack.ucdavis.edu/research/model-codes/river-builder/] R package. Note: environmental variables %R_HOME% and %R_USER% must also be properly defined for Python to access the user installation of R.

River Architect incorporates a modified version of openpyxl [https://openpyxl.readthedocs.io/en/stable/], but a more proper way is installing openpyxl with ArcGIS Pro’s package manager [https://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-conda.htm]. Future versions may additionally require the gdal and rasterio packages (see above instructions).

Furthermore, River Architect requires ArcGIS Pro’s “Spatial Analyst” and “3D” (Volume Assessment only) extensions. Another version of River Architect based on open-source geodata processing packages is planned for the future.

Any folder beginning with a “.” for example .cache or .idea must not be modified or assessed by any other program, in particular during the execution of package methods. Files stored in .templates folders are directly called by the GUIs if user definitions are admitted. At the end of execution, the applied modules have created their output folders, which are indicated in the command prompt.

Other software and dependencies

A workbook editing software such as Excel or LibreOffice [https://www.libreoffice.org/] is required for modifications of user-defined databases (.xlsx files).

For the visualization of geodata (.shp and .tif files), and mapping with project files (.aprx), an installation of ArcGIS Pro is required. Open-source alternatives are QGIS [https://www.qgis.org/en/site/forusers/download.html] or SAGA [http://www.saga-gis.org/en/index.html] (Please note: There are more GIS alternatives out there.).

Logfiles[bookmark: logs]

Logfiles logfile.log are created in the module directories during every run task. These files contain time-stamped terminal messages of program activities, warnings and error messages. Thus, logfiles enable the user to review process duration and to trace back problems. The handling of potential errors and warning messages are listed in the Troubleshooting Wiki [https://github.com/RiverArchitect/RA_wiki/Troubleshooting] with descriptions of problem sources (cause) and solutions (remedy).

Get Started and Signposts

	Get Started and Create Conditions

	Create New Condition

	Populate New Condition

	Analyze Flow

	Make a Subset Condition

	Make Input Files (.inp)

	Align Input Rasters

	Geofile name conventions

	Input file preparation

Get Started[bookmark: getstarted][bookmark: conditions]

River Architect’s first tab invites the user for the creation of Conditions.

[image: ragui]

A Condition is a folder filled with Rasters that represent a temporal snapshot (situation) of a river. Conditions are stored in RiverArchitect/01_Conditions/. For example, if the goal is to assess feature lifespans based on the situation in the year 2008, the condition folder name may be 2008 and the corresponding folder is RiverArchitect/01_Conditions/2008/.
The Condition name may NOT include any SPACE character and good practice is that the first 4 characters represent a 4-digit year.
All other modules build on the data provided in RiverArchitect/01_Conditions/ and the modules create output folders beginning with the defined Condition name and ending with specifiers such as feature layer, reach, or fish (see bottom of HHSI output descriptions) information.

The Get Started-tab buttons invite the user to create conditions from scratch, populate (new) conditions, and make spatial subsets. Every button opens up a new window with the following options:

	Create New Condition: Create a new Condition from scratch

	Populate Condition: Add Morphological Unit, Depth to water table, and Detrended DEM Rasters to an existing (or newly created) Condition

	Create a spatial subset of a Condition: Define a boundary Raster that delineates a spatial frame for creating a subset of an existing Condition (useful for comparing project alternatives at different sites).

Create New Condition[bookmark: new-condition]

The creation of a new Condition requires that a 2D hydrodynamic model was previously run to obtain spatially explicit flow depth and velocity data. Moreover, grain size data (spatially explicit)and a digital terrain elevation model need to be available.
A new popup window inquires following inputs for generating a new Condition from scratch:

	A name for the new Condition

	A folder containing flow velocity Rasters (preferably use GeoTFF .tif Rasters) corresponding to multiple discharges (read more on discharge definitions). A Raster string may be defined to select only Rasters that contain certain letters in their name from the defined folder (e.g., enter u).

	A folder containing flow depth Rasters (preferably use GeoTFF .tif Rasters) corresponding to multiple discharges (read more on discharge definitions). A Raster string may be defined to select only Rasters that contain certain letters in their name from the defined folder (e.g., enter h).

	A DEM (Digital Elevation Model) or DTM (Digital Terrain elevation Model) of the terrain covered by the flow depth and velocity Rasters.

	A Grain Size Raster (U.S. customary: in feet or SI metric: in meters).

	An optional folder containing velocity angle Rasters (preferably use GeoTFF .tif Rasters) corresponding to multiple discharges (read more on discharge definitions). Note that velocity angles are defined in degrees from North, i.e. North=0, East=90, West=-90, South=180/-180. A Raster string may be defined to select only Rasters that contain certain letters in their name from the defined folder (e.g., enter va).

	An optional Scour Raster (U.S. customary: in feet or SI metric: in meters) containing annual scour rates, which may result from terrain change detection analyses (Pasternack and Wyrick 2017 [http://dx.doi.org/10.1002/esp.4064]) or hydro-morphodynamic modeling (tricky).

	An optional Fill Raster (U.S. customary: in feet or SI metric: in meters) containing annual fill rates, which may result from terrain change detection analyses (Pasternack and Wyrick 2017 [http://dx.doi.org/10.1002/esp.4064]) or hydro-morphodynamic modeling (tricky).

	A background Raster, which can optionally be used to Align Input Rasters.

Note that the optional inputs are highly recommended to make the subsequent analyses robust.

Once the input is defined, clicking on the CREATE CONDITION button will create the new Condition as RiverArchitect/01_Conditions/NEW_CONDITION with the following contents:[bookmark: nameconvention]

	back.tif is a background Raster that may be used for limiting lifespan analyses (LifespanDesign) extents and all subsequent analyses. Moreover, the background Raster enables consistent mapping.

	dem.tif is a DEM Raster indirectly required by the LifespanDesign, Modify Terrain, Stranding Risk, ProjectMaker and Max Lifespan modules.

	dmean.tif is a grain size Raster indirectly required by the LifespanDesign, SHArC, Stranding Risk, ProjectMaker and Max Lifespan modules.

	fill.tif is topographic change Raster indicating annual sediment deposition rates, which are required by the LifespanDesign, and indirectly, the Max Lifespan and ProjectMaker modules.

	hQQQQQQ.tif are flow depth rasters required by the LifespanDesign, SHArC, Stranding Risk, and (indirectly) the ProjectMaker and Max Lifespan modules. Read more about file name conventions.

	uQQQQQQ.tif are flow velocity rasters required by the LifespanDesign, SHArC, Stranding Risk, and (indirectly) the ProjectMaker and Max Lifespan modules. Read more about file name conventions.

	scour.tif is topographic change Raster indicating annual terrain erosion rates, which are required by the LifespanDesign, and indirectly, the Max Lifespan and ProjectMaker modules.

	vaQQQQQQ.tif is flow velocity direction rasters required by the Stranding Risk module. Read more about file name conventions.

The flow depth and velocity Rasters may require manual renaming to adapt to these Raster name conventions. A River Architect Tools script facilitates renaming multiple file names. Subsequently, populating the created Condition is strongly recommended

Populate Condition[bookmark: pop-condition]

Condition - wise Morphological Unit, Depth to water table, and Detrended DEM Rasters add consistency to the analyses of all modules. The Populate Condition popup window invites the user to define a Condition to be populated, and subsequently to create the following Rasters:

	Morphological Unit,

	Depth to water table, and

	Detrended DEM.

Make Morphological Unit Rasters[bookmark: mu]

Instream morphological unit Rasters according to Wyrick and Pasternack (2014) [https://www.sciencedirect.com/science/article/pii/S0169555X14000099] enable the correct allocation of river design features as defined in the thresholds workbook. For this purpose, the following inputs are needed:

	A flow velocity raster (use baseflow [https://en.wikipedia.org/wiki/Baseflow] in line with scientific literature [https://www.sciencedirect.com/science/article/pii/S0169555X14000099]);

	A flow depth raster (use baseflow [https://en.wikipedia.org/wiki/Baseflow] in line with scientific literature [https://www.sciencedirect.com/science/article/pii/S0169555X14000099]).

The delineation of morphological units as a function of flow depth and velocity can be modified in the morphological_units.xlsx workbook (RiverArchitect/.site_packages/templates/ folder). A click on the Populate Condition GUI’s View/change MU definitions opens this workbook.

[image: ramus]

For making changes in the workbook, choose either one of the pre-defined river classes (Mountain river with large roughness elements, gravel-cobble bed, or cobble-boulder bed) or select User Defined from the drop-down menu in cell E2. If User Defined is selected, morphological units can be defined as a function of upper and lower limits of flow velocity and depth in cells N6:Q22 (instream) and/or N24:Q43 (floodplain). Morphological unit names can be modified in cells M6:M22 (instream) and/or M24:M43 (floodplain). Please note:

	Do not modify anything outside the green frames, in particular, do not make changes within the red frame (cells B3:J44 and the .templates sheet).

	Use metric units only; for the conversion of metric units for their application to Rasters in U.S. customary units, select Units: U.S. customary (default) from the Populate Condition window. The currently selected unit system is shown at the bottom of the Populate Condition window.

	Instream and floodplain units are currently equally applied (future versions of River Architect aim at a more precise approach to delineate floodplain morphological units).

	The maximum length of morphological units names (M6:M22 and/or M24:M43) is 50 characters per cell.

	River Architect calculates a Raster for each morphological unit defined using the following arcpy.sa expression: Con(h > 0, Con(((u >= u_lower) & (u < u_upper) & (h >= h_lower) & (h < h_upper)), mu_id)). The final Raster is created by the superimposition of all applicable morphological raster and using the maximum mu_id value (pre-defined in column E). with arcpy.sa cell statistics: CellStatistics(mu_id_raster_list, "MAXIMUM", "DATA").

	The results are

	the morphological unit’s ID Raster saved as RiverArchitect/01_Conditions/CONDITION/mu.tif; and

	the morphological unit’s name Raster (uses an intermediated Raster to point conversion) saved as RiverArchitect/01_Conditions/CONDITION/mu_str.tif.

Make Depth to Water Table Rasters[bookmark: d2w]

The depth to the water table is primarily required for identifying relevant regions for target indigenous plant species [https://github.com/RiverArchitect/RA_wiki/River-design-features#plants]. For this purpose, the following input Rasters are required.

	A terrain DEM (or DTM) is automatically assigned from the selected Condition folder.

	A low-level flow depth Raster (in arid regions) based on the assumption that the groundwater table in the vicinity of the river corresponds to at least this water level, which marks the moment of highest water stress for plants.

RiverArchitect estimates the depth to water table by interpolating the given low flow water surface across the DEM extent. There are three options for the interpolation method used to calculate this surface:

	IDW: Inverse distance weighted interpolation. Each null cell in the low flow depth raster is assigned a weighted average of its 12 nearest neighbors. Each weight is inversely proportional to the second power of the distance between the interpolated cell and its neighbor. Thus, the closest neighbors to an interpolated cell receive the largest weights.

	Kriging: Ordinary Kriging interpolation. This method also uses a weighted average of the 12 nearest neighbors, but weights are calculated using a semi-variogram, which describes the variance of the input data set as a function of the distance between points. A spherical functional form is also assumed for the fitted semi-variogram. Kriging is the most accurate interpolation method if certain assumptions are met regarding normality and stationarity of error terms. However, it is also the most computationally expensive method.

	Nearest Neighbor: The simplest method, which sets the water surface elevation of each null cell to that of the nearest neighboring cell.

All interpolated rasters are saved with a corresponding .info.txt file which records the interpolation method and input rasters used in its creation.

Make Detrended DEM Rasters[bookmark: det]

Automation of grading or the relevance of widening and berm setbacks build on the relative elevation of the terrain over the river water surface elevation. For this purpose, the following input Rasters are required.

	A terrain DEM (or DTM) is automatically assigned from the selected Condition folder.

	A flow depth Raster (in arid regions) marks the level for relative elevations. Designers may have different reasons for choosing the relevant flow depth Raster (low flows for habitat enhancement or high flows for flood protection), and therefore, no recommendation is made here.

Please note that step-like artifacts may occur in the detrended DEM. The steps result from variations in the Thalweg elevation of the DEM that attenuate with the selection of flow depth Rasters of higher discharges. Users can decide to select a low-flow depth Raster to be on the safe side for delineating vegetation plantings or a high-flow depth Raster to reduce step-like artifacts in the detrended DEM.

Create a spatial subset of a Condition[bookmark: sub-condition]

The creation of a spatial subset of a Condition requires a Boundary shapefile or Raster (if this is a GRID Raster, select the corresponding .aux.xml file). The boundary file needs to contain On-values (Integer 1) and Off-values (Integer 0) values only as specified in the Project Area Polygon preparation.

If a shapefile is selected:

	River Architect automatically uses the gridcode Field in the Shapefile’s Attribute Table.

	If the gridcode Field cannot be found, the third Field or the FID Field is used. (in that order). Note that the enforced usage of the FID Field may cause errors later on.

	Ensure that the gridcode / third Field contains On-Off Integers only, where 0=Outside and 1=Inside boundary.

	Restart River Architect to create multiple subsets. This issue is related to arcpy, which will not release the new datasets unless River Architect is closed (otherwise there will be an error message referring to registering datasets [https://pro.arcgis.com/en/pro-app/help/data/geodatabases/overview/a-quick-tour-of-registering-and-unregistering-data-as-versioned.htm]) We are developing workarounds.

If a Raster is selected:

	Ensure that the Raster contains On-Off Integers only, where 0=Outside and 1=Inside boundary.

The boundary files are of particular interest within the ProjectMaker and SHArC modules.

Analyze Flows[bookmark: ana-flows]

The sustainability (lifespan) and ecohydraulic analyses require hydraulic data related to discharges (flows) and the return period. The Analyze Discharge pop-up window guides through the creation of flow-metadata files that link hydraulic Raster names with flows and return periods for a Condition. Analyze Discharge looks for flow depth and velocity Rasters in a selected Condition, extracts the flow quantity, and creates a template workbook in the Condition folder. For this purpose, hydraulic (flow depth and velocity) Rasters must be named according to the Geofile name convetions (i.e., flow depth Rasters = “hQQQQQQ.tif” and flow velocity Rasters = “uQQQQQQ.tif”).

[image: raq]

Start with selecting a Condition from the upper listbox and click the Analyze button. This creates a workbook called RiverArchitect/01_Conditions/flow_definitions.xlsx, which automatically opens up and asks for the definitions of flow return periods in years. Frequent flows with a return period of one year or less should be assigned 1.0 (column C).

[image: raq]

Flow duration curves are required for ecohydraulic analyses and can be generated for specific Physical Habitats preferred by target fish species-lifestages.
Select at least one Fish Species - Lifestage from the lower listbox and use the Add button (to add multiple Fish Species - Lifestages, select-add one-by-one). A click on the Modify Source button opens the Fish.xlsx workbook that contains Fish Species - Lifestage definitions. At this point, on particular fish names and seasons start/end dates may be modified. Modifications of Lifestages should be avoided. For more details, refer to the SHArC Wiki pages.
Before a Fish Species - Lifestage flow duration curve can be generated, ensure to Select input Flow Series (workbook) with the following characteristics:

	The file ending must be .xlsx

	Column A must contain dates, where

	row 1 is the header (i.e., A1 = "Date"),

	row 2 indicates the date units (i.e., A2 = "(DD-MM-YY)"), and

	date series must be entered from row 3 onward (i.e., dates in the format A3 = 5-Sep-03 or A4 = 9/5/2003).

	Column B must contain mean daily flows, where

	row 1 is the header (i.e., B1 = "Mean daily"),

	row 2 indicates the date units (i.e., B2 = "(CFS)" or `B2 = “(CMS)”), and

	mean daily flows must be entered from row 3 onward (i.e., dates in the format B3 = 59.3 or B4 = 79).

	For later application, store the flow series workbook in RiverArchitect/00_Flows/InputFlowSeries/ (default folder where River Architect looks for flow series).

An example workbook is provided with RiverArchitect/00_Flows/InputFlowSeries/flow_series_example_data.xlsx.

Click on Make flow duration curve(s) (plural applies if multiple Fish Species - Lifestages are selected) to generate an Physical Habitat workbook for target Fish Species - Lifestages. The workbook containing the last Fish Species - Lifestage flow duration curve in the selected list will open up automatically when the flow duration curve generation finishes without error messages. All generated workbooks will be saved as RiverArchitect/00_Flows/CONDITION/flow_duration_FILI.xlsx, where FILI denotes the first two letters of the selected fish species and lifestage. The workbooks contain two tabs that link all observed mean daily flows from the target Fish Species - Lifestage’s season (tab 1) with the available 2D model data (tab 2). The result is a flow duration curve that provides a measure of how well the 2D model data may represent the relevant discharges for a Fish Species - Lifestage.

[image: raq]

Generate Input File(s) (.inp) [bookmark: inpfile]

Lifespan mapping uses input files (.inp) to identify relevant Rasters and (flood) return periods. Given that Analyze Flow was previously executed for a Condition, an input file can be generated with the Make Input File tool.

The resulting input_definitions.inp is stored in the directory RiverArchitect/01_Conditions/CONDITION/. input_definitions.inp contains information about lifespan duration and Raster names, which link to Rasters containing spatial information as described in the Parameters Wiki page. The order of definitions and lines must not be changed to ensure the proper functioning of the module. Enter or change the information in the corresponding lines, only between the “=” and the “#” signs (the input routines uses these signs as start and end identifiers for relevant information). Verify that every input_definitions.inp created contains the following definitions (line by line):

	Line No.
	Par.
	Description

	Lines 1-3
	None
	Do not change

	Line 4
	Return periods
	Comma-separated list of flood discharge return periods corresponding to the hydraulic rasters; i.e., the first entry after ``='' corresponds to the return period of the first velocity and flow depth raster (Lines 11 and 12, respectively)

	Lines 5-7
	None
	Do not change

	Line 8
	CHSI
	One raster name of spatial composite Habitat Suitability Indexes

	Line 9
	DoD
	Comma-separated list of two (first = scour, second = fill) DEM of Differences rasters; if one raster is missing, replace it by double quotation marks, for example scour is missing: ... = "", fill # ...

	Line 10
	det
	One raster name defining the detrended DEM raster

	Line 11
	u
	Comma-separated list defining flow velocity rasters corresponding to discharge return periods (Line4); replace missing rasters by double quotation marks, for example, when u rasters of a return period list of five entries are not available for entries 2 and 4, ... = u001000, "", u003000, "", u005000 # However, ensure that at least two u rasters are defined. The 00Q000 identifier relates to the underlying discharge in thousand cfs or m3/s (see Geofile name conventions).

	Line 12
	h
	Comma-separated list defining flow depth rasters corresponding to discharge return periods (Line 4); replace missing rasters by double quotation marks, for example, when h rasters of a return period list of six entries are not available for entries 2, 3 and 5, type ... = h001000, "", "", h004000, "", h006000 # Ensure that at least two h rasters are defined. The 00Q000 identifier relates to the underlying discharge in thousand cfs or m3/s (see Geofile name conventions).

	Line 13
	Grain size
	One raster name defining the raster containing mean grain diameters (typically dmean; pay attention to raster units: use feet for U.S. customary and m for S.I.)

	Line 14
	mu
	One raster name delineating morphological units according to the definitions in Sec. \ref{sec:par}

	Line 15
	d2w
	One raster name defining the depth to water table

	Line 16
	dem
	One raster name defining the digital elevation model

	Line 17
	sidech
	One raster name delineating appropriate sites for side channels

	Line 18
	wild
	One raster name for the spatial confinement of the feature analysis of 0/nodata (= off) and 1 (= on) values for any purpose (wildcard raster)

The LifespanDesign module produces results based on the available information only, where any raster name can be substituted with double quotation marks. However, this lack of information reduces the accuracy of final lifespan and design maps. No results are produced for a feature where the information is insufficient for the analysis. The required information for every feature corresponds to the definitions in the input file.

Map extent input definition files [bookmark: inmaps]

The file RiverArchitect/LifespanDesign/.templates/mapping.inp defines map center points, extents (dx and dy in ft or m) and scales (scale has no effect currently).

The extent of the map determines the map scale, where the corresponding dx and dy values define the map width and height in ft or m, respectively. The layout templates (in the project file RiverArchitect/02_Maps/templates/river_template.aprx) define the paper size, which is by default “ANSI E landscape” (width = 44 inches, height = 34 inches).

The map focus is defined page-wise in mapping.inp from Line 8 onward. Existing pages can be removed by simply deleting the line. Additional pages can be added by inserting or appending a new line below Line 8, which needs to begin with the keyword “Page” and x and y need to be stated in brackets, separated by a comma without any white space.

Good practice for changing the map layouts starts with importing the determine_extents.mxd layout from RiverArchitect/ModifyTerrain/templates/ into a map project (.aprx). Zoom to new focus point using, for example, using ArcGIS Pro’s Go To XY function or freehand to any convenient extent. Use ArcGIS Info cursor and click in the center of the reticule to obtain the current center point. Write new center point coordinates for the desired page number in mapping.inp.

For retrieving the extent, in ArcGIS Desktop, go to the View menu, click on Data Frame Properties... and go to the Data Frame tab. In the Extent box, click on the scroll-down menu and choose Fixed Extent. Subtracting the Right value from the Left value defines dx (Line 3 in mapping.inp) and subtracting the Top value from the Bottom value defines dy (Line 4 in mapping.inp).

The function uses these definitions for zooming to each point defined below Line 8 in mapping.inp, cropping the map to the defined extents and exporting each page to a pdf map bundle containing as many pages as there are defined in mapping.inp.

The program uses the reference coordinate system and projection defined in the .aprx file’s map layout templates or in mapping.inp.

Align Input Rasters[bookmark: align-inputs]

In order to ensure robustness and accuracy of analyses, it is important that input rasters share a common alignment, cell size, and coordinate system. Input rasters can be aligned in the following ways:

	During creation of a new Condition, align input rasters by using a background raster and selecting the “Use to align input rasters” checkbox.

	For an existing condition, the tool from the GetStarted menu allows selection of an alignment raster.

The alignment routine reprojects and/or resamples the input raster data to match the following attributes from the input alignment raster:

	ArcGIS SpatialRefernce (i.e. reference coordinate system)

	lower left corner of raster, modulo cell size

	cell size

Caution should be taken when using the built-in alignment routine, as input data may have already been resampled (e.g. from a mesh, TIN, or point features) and repeated resampling of data may create artifacts in the resultant data. Additionally, other routines in River Architect assume that water surface elevation can be calculated by summation of the DEM and depth rasters, which may not hold true if these data have been subject to different resampling schemes.

Geofile (Raster) conventions[bookmark: terms]

The input Rasters need to be in GeoTIFF (.tif) format, notably, a raster_name.tif file. Note that River Architect is designed to also handle Esri’s GRID format, but the primary raster file type should be GeoTIFF. Depth Raster names must start with h and velocity Raster names must start with u, followed by a six-digit discharge QQQQQQ, which is independent of the unit system. For example, a flow depth Raster associated with a discharge of 55 m³/s needs to be called h000055.tif and a velocity Raster associated with a discharge of 11000 m³/s needs to be called u011000.tif. Likewise, a flow depth Raster associated with a discharge of 55 cfs needs to be called h000055.tif. The Raster names ignore discharge value digits after the decimal point. Moreover, every flow depth Raster requires a matching velocity Raster and vice versa (e.g., h000055.tif requires a Raster called u000055.tif).

Note: back.tif may be used to limit calculation extents.

Manual input data preparation[bookmark: inputs]

Relevant Raster names for calculation are defined in an input file (.inp) of the LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] module (input section see for details and definitions). Please note that .inp files for lifespan mapping are different from the input (.txt) files required for River Builder.
Sample data representing a patch of a Californian gravel-cobble bed river in 2100 can be downloaded here [https://github.com/RiverArchitect/SampleData/archive/master.zip]. The input file of the sample case is located in 01_Conditions/2100_sample/input_definitions.inp file. The sample case includes a set of Rasters for flow scenarios corresponding to return periods of < 1.0 (ignored in the input file), 1.0, … , 2.0, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, and 50.0 years, as well as a couple of annual discharges for habitat assessments. The according flows are defined in 01_Conditions/2100_sample/flow_definitions.xlsx, with pre-compiled flow duration curves for whetted area (alhy), Chinook salmon juveniles (chju), fry (chfr), and spawning (chju) lifestages that are stored in 00_Flows/2100_sample/flow_duration_FILI.xlsx (see above flow definitions).

The below listed Rasters are available in GeoTIFF format in 01_Conditions/2100_sample/ for the sample case condition = 2100_sample. Italic font indicates optional Rasters, which are, however, recommended to use because they significantly increase the pertinence of lifespan maps; Rasters written in CAPITALIZED ROUGE FONT font are required for River Architect to work. The Raster names correspond to the above-described naming conventions.

	PARAMETER
	(UNITS)

	FLOW VELOCITY
	(in fps or m/s)

	u000300
	lowest

	u000350
	...

	u......
	...

	u088053
	highest

	FLOW DEPTH
	(in ft or m)

	h000300
	lowest

	h000350
	...

	h......
	...

	h088053
	highest

	Topographic change
	(in ft or m)

	dodfill
	average annual deposition height

	dodscour
	average annual scour depths

	Depth to water table
	(in ft or m)

	d2w
	referring to a baseflow of 15 m³/s (530 cfs)

	Background
	(black and white)

	back
	here: determines LifespanDesign's calculation extents

	MORPHOLOGICAL UNITS
	Float / Int

	mu
	generated with Populate Condition (Get Started)

	D mean
	(in ft or m)

	dmean_ft or dmean
	mean valley grain size

	DEM
	(in ft a.s.l.)

	dem
	Digital Elevation Model

	DEM DETRENDED
	(in ft or m)

	dem_detrend
	generated with Populate Condition

	Side channel
	(0/nodata=off and 1=on)

	sidech
	Side channel delineation

	Wildcard
	(0/nodata=off and 1=on)

	wild
	On/ off values for any purpose to confine analyses

More Rasters indicating morphological units (e.g., Wyrick and Pasternack 2014 [https://www.sciencedirect.com/science/article/pii/S0169555X14000099]) or topographic change (e.g., Carley et al. 2012 [https://www.sciencedirect.com/science/article/pii/S0169555X12003819]) as well as a detrended digital elevation model (DEM), surface grain size estimate and a depth to water table Raster are (optionally) required.

Some parameters, such as the dimensionless bed shear stress or the mobile grain size, can be directly computed from the flow velocity, depth, and present grain size. Additional input Rasters could be used for every parameter to shorten calculation duration, but this approach required large storage capacity on the hard disk and it is less flexible regarding computation methods. Therefore, the River Architect uses its own routines for calculating parameters such as the dimensionless bed shear stress or mobile grain sizes.

NoData handling: River Architect does not consider pixels with NoData values and has routines to handle NoData during the calculation.

Feature lifespan and design assessment

	Introduction to lifespan and design mapping

	Quick GUIde to lifespan and design maps

	Interface and choice of features

	Input: Condition and preparation of Rasters

	Input: Modify threshold values

	Input: Optional arguments

	Run

	Alternative run options

	Output

	Parameter hypotheses

	River design and restoration features

	Code extension and modification

Introduction to lifespan and design mapping [bookmark: lfintro]

Survival thresholds applied to a sequence of habitat enhancement features can be spatially compared with hydraulic and sediment data as a result of 2D numerical modeling. Modeled discharges (flows) can be associated with flood return periods that determine feature lifespans. The resulting lifespan maps indicate the temporal stability of particular river design features and techniques. Areas with particularly low or high lifespans help planners optimize the design and positioning of features. Moreover, discharges related to specific flood return periods enable probabilistic estimates of the longevity of particular features. Following these procedures described by Schwindt et al. (2019) [https://www.sciencedirect.com/science/article/pii/S0301479718312751] (open access factsheet-version [https://www.sciencedirect.com/science/article/pii/S2215016119300913/pdfft?md5=0609592e5beae22d0fc68adb409129f8&pid=1-s2.0-S2215016119300913-main.pdf]), the LifespanDesign module creates Rasters, projects (aprx), and maps (pdf) of the following types:

	Lifespan maps qualitatively indicate areas where features make sense and the associated feature lifetime estimate in years.

	Design maps indicate dimensional requirements for achieving the success of a feature (e.g., the minimum required log diameter for the stability of wood / LWM [https://github.com/RiverArchitect/RA_wiki/wiki/River-design-features#elj]).

This Wiki page explains the usage of the LifespanDesign module and it is structured as follows:

	A Quick Guide to the application of the code using GUI with descriptions of required input Rasters and alternative launch options.

	Physical explanations of relevant parameters.

	Explanations of hypotheses in the design of river modification and restoration features.

	Coding conventions with descriptions of extension possibilities.

Quick GUIde to lifespan and design maps[bookmark: lfgui]

Interface and choice of features

After successful Installation [https://github.com/RiverArchitect/RA_wiki/wiki/Installation] and the creation of at least one Condition, lifespan and design maps can be created from the Lifespan -> LifespanDesign tab.

[image: lfgui]

To begin with lifespan/design mapping, click on the drop-down menu “Add Features” and select relevant features. Multiple selection is possible and will extend the “Selected features” list. The LifespanDesign module enables the selection of the feature groups of “terraforming” (framework), “vegetation plantings”, “other nature-based engineering” and “connectivity / maintenance”.

Input: Condition and preparation of Rasters[bookmark: inpras]

The names of input Raster files are defined in a proper file format (.inp), which can be changed directly from the GUI button “Modify Raster input”. The .inp files indicate after the # if it requires a single Raster name only (STRING) or a list of Rasters (min. two Rasters, LIST). The extension .tif is not required for in the Raster names.

The maximum number of hydraulic Rasters is unlimited. The lifespans related to the hydraulic Rasters are also defined in the separate .inp file. The Get Started module provides routines for setting up input files that must be stored as RiverArchitect/01_Conditions/CONDITION/input_definitions.inp for every Condition.

Modifications of map extents can be made by clicking on the “Modify map extent” button or (un-)check the Limit computation extent to background (back.tif) Raster box.

Input: The threshold values workbook threshold_values.xlsx and calculation hierarchy[bookmark: modthresh]

The “Modify survival threshold values” button opens the master workbook containing threshold values and survival identifiers (location: LifespanDesign/.templates/threshold_values.xlsx).
[image: thresholds]

Any threshold value can be changed or defined for any feature, but the workbook structure may not be modified (i.e., cells, columns or rows may not be shifted, moved or deleted). The unit system (U.S. customary or SI metric) in the threshold values spreadsheet are independent of the GUI settings but they need to be coherent with the input Rasters of the Condition.

River Architect automatically identifies defined threshold values for selected features. Moreover, River Architect automatically applies all defined threshold values to the extent of Rasters available within a Condition. The identification and execution of possible analyses follow a strictly hierarchical order. If an analysis cannot be executed because of missing threshold value definitions or Rasters, River Architect automatically proceeds to the hierarchically next lower analysis. The analysis hierarchy is defined in order to first created lifespan maps (if row 24 in threshold_values.xlsx is set to TRUE for a feature), and second to save design maps (if row 25 in threshold_values.xlsx is set to TRUE for a feature).
When defining threshold values in threshold_values.xlsx carefully study the following hierarchy and parameter application of River Architect (read more about threshold application to features):

	Dimensional hydraulic parameter analysis:

	Flow depth starting with the lowest discharge to the highest discharge Raster (hQQQQQQ_QQQ.tif). A threshold value for the flow depth above which a feature will fail can be defined in row 12 in threshold_values.xlsx.

	Bed shear stress τb calculated as

ras_tb = {[uQQQQQQ_QQQ / (5.75 * Log10(12.2 · hQQQQQQ_QQQ / (2 · 2.2 · dmean)))]2}

where

	A threshold value for mobility according to the bed shear stress τ\b, cr can be defined in row 6 of threshold_values.xlsx (read more for example in Lamb et al. 2008 [https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JF000831])

	ρw = water density (1000 kg / m3)

	uQQQQQQ_QQQ (m/s or fps), hQQQQQQ_QQQ (m or ft), and d84 = 2.2 · dmean (m or ft) are arcpy.Raster()s considering that the grain diameter D84 can be approximated by D84 = 2.2 · D50 (Rickenmann and Recking 2011 [https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010WR009793])

	g = gravitational acceleration (9.81 m/s2)

	s = ratio of sediment grain and water density (2.68)

	Note that the τb analysis is omitted if SF is defined, which enables to run either a τb analysis OR a mobile grain analysis.

	Flow velocity starting with the lowest discharge to the highest discharge Raster (uQQQQQQ_QQQ.tif). A threshold value for the velocity above which a feature will fail can be defined in row 13 in threshold_values.xlsx.

	Dimensionless hydraulic parameter analysis:

	Dimensionless bed shear stress τ* calculated as

ras_taux = {ρw · [uQQQQQQ_QQQ / (5.75 * Log10(12.2 · hQQQQQQ_QQQ / (2 · 2.2 · dmean)))]2} / [ρw · g (s - 1) · dmean]

where

	A threshold value for mobility according to the critical dimensionless bed shear stress τ*, cr can be defined in row 7 of threshold_values.xlsx (read more for example in Lamb et al. 2008 [https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JF000831])

	ρw = water density (1000 kg / m3)

	uQQQQQQ_QQQ (m/s or fps), hQQQQQQ_QQQ (m or ft), and d84 = 2.2 · dmean (m or ft) are arcpy.Raster()s considering that the grain diameter D84 can be approximated by D84 = 2.2 · D50 (Rickenmann and Recking 2011 [https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010WR009793])

	g = gravitational acceleration (9.81 m/s2)

	s = ratio of sediment grain and water density (2.68)

	Note that the τ* analysis is omitted if SF is defined, which enables to run either a τ* analysis OR a mobile grain analysis.

	Froude number Fr as

ras_Fr = uQQQQQQ_QQQ / (g · hQQQQQQ_QQQ)1/2

	A threshold value for mobility according to the Froude number can be defined in row 13 of threshold_values.xlsx

	Mobile grains (bed mobility) ras_Dcr, fine sediment ras_Dcf size Rasters as:

ras_Dcx = = SF · uQQQQQQ_QQQ2 · n2 / [(s - 1) · hQQQQQQ_QQQ1/3 · τ*, cr]
where

	τ*, cr is the critical dimensionless bed shear stress (i.e., threshold value) above which sediment is mobile (read more for example in Lamb et al. 2008 [https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JF000831]). τ*, cr can be defined in row 6 of threshold_values.xlsx.

	n is Manning’s n [https://en.wikipedia.org/wiki/Manning_formula#Manning_coefficient_of_roughness] in s/m1/3 (or s/ft1/3 - an internal conversion factor of k = 1.49 applies), which can be changed in the LifespanDesign GUI

	SF is a dimensionless safety factor that can be defined within threshold_values.xlsx; the angular boulders / grains threshold definitions indicate the application of a safety factor of 1.3. The Mobile Grain analysis is omitted if SF is not defined, which enables to run either a τ* analysis OR a mobile grain analysis.

	Note that a Mobile Grain analysis will only work if a safety factor is defined in row 19 of threshold_values.xlsx.

	Topographic change Rasters tcd are applied to limit lifespan Rasters to regions where the fill and scour threshold values defined in rows 22 and 23 of threshold_values.xlsx, respectively, are exceeded. The “Topographic change: inverse relevance” threshold applies when the feature relevance refers to regions where the scour and fill rates below the specific threshold values are relevant. By default, features such as angular boulders (rocks or riprap) are relevant where the topographic change rate (scour) exceeds the angular boulder’s threshold value for scour. However, features such as grading or side cavities, are relevant where the scour or fill rates do not exceed the threshold rates because these areas are presumably disconnected from the river. Thus, “Topographic change: inverse relevance” is TRUE for the grading, side cavity, and side channel features.

	A Morphological Unit Raster as produced with the GetStarted module according to Wyrick and Pasternack 2014 [https://www.sciencedirect.com/science/article/pii/S0169555X14000099] can be used to limit lifespan mapping to morphologically reasonable regions. For example, grading of bedrock units is not reasonable and the default threshold_values.xlsx excludes bedrock in row 16. River Architect enables the application of limit morphological units with an exclusive and an inclusive method:

	If the exclusive method is chosen (set row 18 in threshold_values.xlsx to 0), River Architect will look for morphological units listed in row 16 and it will set pixels with these morphological units to NoData in lifespan maps.

	If the inclusive method is chosen (set row 18 in threshold_values.xlsx to 1), River Architect will look for morphological units listed in row 17 and it will set pixels that are not within these morphological units to NoData in lifespan maps.

	Morphological units can be entered as a comma-separated list in row 16 and 17 of threshold_values.xlsx corresponding to the settings made during the morphological unit Raster creation (morphological units are defined in RiverArchitect/.site_packages/templates/morphological_units.xlsx.

	Side channel delineation work similar to morphological unit delineation and will only be executed if the Condition folder contains a Raster called sidech (or otherwise named according to the input file in line17). The side channel delineation Raster should only contain Integer values of 1 indicating pixels where a side channel may be drawn. There is no side channel threshold value.

	The Depth to the water table table (see d2w.tif Raster creation with the GetStarted module) is particularly important for vegetation plantings or grading (to make terrain suitable for vegetation plantings) features. Threshold values for a lower and an upper limit of the depth to the water table value are defined in row 7 and row 8 of threshold_values.xlsx, respectively. River Architect will set all areas (pixels) that are not within the value range defined in row 7 and row 8 to NoData in lifespan (and design) maps. Leave both rows empty to avoid depth to water table-limited lifespan analyses.

	The Detrended DEM threshold values (see dem_detrend.tif Raster creation with the GetStarted module) may be important to limit terraforming features, such as widening/berm setbacks to economically reasonable ranges. Threshold values for a lower and an upper limit of the detrended DEM are defined in row 9 and row 10 of threshold_values.xlsx, respectively. River Architect will set all areas (pixels) that are not within the value range defined in row 9 and row 10 to NoData in lifespan (and design) maps. Leave both rows empty to avoid detrended DEM-limited lifespan analyses.

	Nature-based engineering in terms of angular boulders or streamwood are applied to areas (pixels) where a Frequency threshold (row 15 in threshold_values.xlsx) is defined.

	Other nature-based engineering than angular boulders or streamwood is applied where the terrain is steep and as a function of depth-to-groundwater (baseflow level). River Architect uses the Terrain Slope threshold values defined in row 20 of threshold_values.xlsx to identify areas (pixels) where other nature-based engineering is required. The Depth to water table thresholds are used to differentiate between vegetative and mineral nature-based engineering. River Architect applies nature-based engineering such as fascines or geotextile between the (min) value in row 7 and the (max) value in row 8. Regions with at terrain slope above the threshold defined in row 20 and above the maximum Depth to the water table defined in row 8 get mineral nature-based engineering (such as rock paving or riprap) assigned. The differentiation is made because nature-based engineering features may dry out when the water table is too far away (vertically).

	Design maps indicating the stability of grains (sediment) or wood (logs) extracted after the generation of all above-listed lifespan maps (i.e., design mapping is at the bottom of the hierarchy). Thus, design mapping makes sense for features where grain stability is relevant (including angular boulders, backwater zones, grading, gravel/sediment augmentation, and side channel creation) and for the streamwood feature.

	Set row 25 to TRUE

	For stable grain size design maps, make the following definitions for a feature in threshold_values.xlsx:

	critical dimensionless bed shear stress τ*, cr in row 6

	frequency threshold in years in row 15 to define the minimum expected lifespan that is required; River Architect uses hydraulic parameter rasters (hQQQQQQ_QQQ and uQQQQQQ_QQQ) corresponding to the return period defined within the GetStarted module (read more on the calculation of stable grain sizes).

	optional: set a required maximum grain size (e.g., to ensure the filter stability of sand for increasing the soil capilarity for vegetation plantings, the default value for the Incorporation of fine sediment feature in column S is set to 2.6 cm corresponding to 0.00667 in)

	For stable wood log design maps, make the following definitions for a feature in threshold_values.xlsx:

	flow depth in row 11 (in m or ft)

	Froude number in row 13 (dimensionless)

	frequency threshold in years in row 15 to define the minimum expected lifespan that is required; River Architect uses hydraulic parameter rasters (hQQQQQQ_QQQ and uQQQQQQ_QQQ for the flow depth and Froude number calculation) corresponding to the return period defined within the GetStarted module (read more on the calculation of stable wood log sizes).

More information on threshold values is provided in the Feature descriptions with detailed discussions of the identifiers and threshold values.

Input: Optional arguments[bookmark: lfinpopt]

The checkbox “Include mapping after Raster preparation” provides the optional automated mapping of results.

The checkbox “Apply wildcard Raster to spatially confine analysis” can be checked to use a Condition’s wild.tif Raster for spatial limitation of the results. This application makes sense for example if the wildcard Raster contains particular land parcels, where the owner wants to foster habitat enhancement.

The checkbox “Apply habitat matching” provides the option of habitat matching to regions where the habitat suitability index is low (<0.5, see explanations in the SHArC [https://github.com/RiverArchitect/RA_wiki/wiki/SHArC] module.

Switching between unit systems (U.S. customary or SI - metric) is possible via the drop-down menu “Units”; please note that the unit system needs to be consistent with all input Raster files.

Manning’s n [https://en.wikipedia.org/wiki/Manning_formula#Manning_coefficient_of_roughness] (in s/m1/3) is used in the grain mobility analysis (Angular boulder feature descriptions) to determine shear velocity that acts on grains. The default value is 0.0473934 s/m1/3 (the GUI only shows the first three decimal places), which corresponds to a global optimum in the sample case (gravel-cobble bed river). Even if the unit system is set to U.S. customary, Manning’s n is defined in the GUI in SI-metric units (an internal conversion factor of k = 1.49 (i.e., n / k is automatically applied for U.S. customary unit settings). The logfiles (produced during the program execution) will state the applied Manning’s n value if used.

Run[bookmark: lfrungui]

Once all inputs are defined, click on “Run” (drop-down menu) and “Verify settings” to ensure the consistency of the settings (the window will freeze for some seconds). After successful verification, the selected options change to green font.

The “Run” drop-down menu provides the following functions:

	Raster Maker prepares lifespan and design Rasters in the directory RiverArchitect/LifespanDesign/Output/Rasters/CONDITION/

	Map Maker prepares project maps and PDF assemblies in the directory RiverArchitect/02_Maps/CONDITION/;

Before running Map Maker, ensure that the correct background image (01_Conditions/CONDITION/back.tif) is linked in the project template file RiverArchitect/02_Maps/templates/river_template.aprx.

The mapping extents can be modified using the mapping.inp input file and the Mapping Wiki explains how the symbology, layouts, and other extent settings may be modified.

Either “Run” option causes a run confirmation window popping up and clicking “OK” calls the analysis, which will run in the background Python window and it freezes the GUI windows. Running the Raster Maker may take 0.1 to 10 hours, depending on the input Raster size, feature set and habitat matching options.

After the analysis, the GUI unfreezes and a new button invites to read the logfiles with run information, as well as error and warning messages that may have occurred during the analysis.

Alternatively, the lifespan mapping functions can be imported in other Python applications (without the GUI) as described in the following Alternative Run options.

Alternative run options[bookmark: lfrun]

The three run options of the GUI call the following methods:

	Raster Maker calls feature_analysis.raster_maker for the preparation of Rasters in the directory Output/Rasters/CONDITION/

	Map maker calls feature_analysis.map_maker for the preparation of an ArcGIS Pro project (aprx) file and maps assembled in pdfs in the directory RiverArchitect/02_Maps/CONDITION/; by default the layouts stored in RiverArchitect/02_Maps/CONDITION/ underlie the pdf creation but the method also accepts other input directories as an optional argument. Please note that directories always need to be absolute; relative paths will result in errors.

The alternative run options are relevant for example to batch process several Conditions. The first alternative run option is to import the LifespanDesign module in the ArcGIS Pros Python environment as follows:

	Prepare input data in .../01_Conditions/CONDITION/ and adapt the background layer image datasets in RiverArchitect/02_Maps/templates/river_template.aprx

	Go to ArcGIS Pros Python folder and double-click one of the following:

C:\Program Files\ArcGIS\Pro\bin\Python\scripts\propy.bat or

C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\python.exe

	Enter import os

	Navigate to the script direction using the command os.chdir("ScriptDirectory")

Example: os.chdir("D:/Python/RiverArchitect/LifespanDesign/")

	Import the module: import feature_analysis as fa

Once the module is imported three methods are available and their use is intended in the following order:

	fa.raster_maker("condition", ∗args) for Raster (GeoTIFF) creation

	fa.map_maker("condition", ∗args) for map (pdf) creation

The following steps illustrate the application for creating Rasters.

	Basic execution: fa.raster_maker("condition"), for example: fa.Raster_maker("2008_rrr")

	The code is now running (this takes two to four hours) and it will prompt its activities.

	Alternatively, the analysis can be limited to some features only (count 2 to 60 minutes per feature for input Raster sizes of 5MB and 1GB, respectively). fa.raster_maker("condition", ∗args) accepts optional arguments that are feature_list, which enables the analysis of any feature listed in the Features section. Some examples for particular applications:

-> Example 1: fa.raster_maker("condition", ["Plantings"]) analyzes plantings only.

-> Example 2: fa.raster_maker("condition", ["Plantings", "Boulders/rocks"], True)analyses plantings and angular boulders (rocks / riprap) only with an optional argument that activates the creation of layouts for plantings and angular boulders (rocks).

-> Example 3: fa.raster_maker("2008_rrr")analyses all available features.

	The complete list of optional arguments of is as follows:

Hint: Respecting the order of optional arguments is crucial to ensure proper application of the desired analysis options.

	args[0] = feature_list as above described.

	args[1] = mapping, which can be True or False (default).

	args[2] = habitat_analysis, which can be True or False (default) for activating or deactivating
habitat delineation (limitation) of restoration features to zones with low habitat suitability (e.g., cHSI = 0.0 to 0.5).

	args[3] = habitat_radius is a float number determining in what distance to low habitat suitability zones restoration features should be applied (default = 400.0 m or ft).

	args[4] = feature_list is either us (default) or si.

	args[5] = feature_listis either True or False (default).

The code creates a temp folder called .cache where it stores temp variables, databases, and Rasters. Avoid accessing .cache while the code is running and ensure its (manual) deletion in the case that the code crashed.

fa.map_maker(∗args, **kwargs) creates pdf map assemblies based on the layout files stored in RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx and Rasters prepared with fa.Raster_maker("condition", ["Featurename"], True). fa.map_maker(∗args, **kwargs) accepts an optional argument defining a CONDITION and a keyworded argument defining map-able reach IDs:

	Option 1: fa.map_maker("2018_mod") uses the map folder RiverArchitect/02_Maps/2018_mod/ and Rasters stored in RiverArchitect/Output/Rasters/2018_mod/

	Option 2: fa.map_maker("2018_mod", "rrr") uses the map folder RiverArchitect/02_Maps/2018_mod/, Rasters stored in RiverArchitect/Output/Rasters/2018_mod/, and limits mapping to the extents related to a reach "rrr" with its extents defined in RiverArchitect/ModifyTerrain/.templates/computation_extents.xlsx

The second alternative run option for the LifespanDesign module is to run it as a standalone script (feature_analysis.py) from the system command line:

	Launch terminal (Start -> type cmd)

	Navigate to the place where ArcGIS python.exe is stored:

For example: C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\

	Run as script: python.exe DriveLetter:\...\LifespanDesign\feature_analysis("condition", ["Featurename"])

	The code asks for a condition, which needs to be typed case-sensitive and without any apostrophes:

For example: Enter the condition (shape: >> XXXX (e.g., >> 2008))>> 2008

	Next, the code asks for a feature_list, which is and optional argument (simply hitting enter works though); the feature list must be typed as list (in brackets): Enter the condition (no mandatory; do not forget brackets − example: >> ["Featurename1", "Featurename2"] >> ["Sidecavity", "Bermsetback"]

	The program is now running (this takes time) and it will prompt when it finished.

Calling the module as .py script may cause errors because of differences between path interpretation methods and it is limited to the creation of Rasters only. Therefore, the fastest and most consistent way for using the feature_analysis script is to import it as above described.

Output[bookmark: output]

Rasters

The output Rasters are either of the types lifespan (lf_shortname) or design (ds_shortname) and they are created in .../Output/Rasters/CONDITION/. The usage of shortnames (see the list on the Features page) is necessary because arcpy cannot handle Rasters with names longer than 13 characters when the GRID format is used (even though the standard Raster type is GeoTIFF). The analysis automatically shortens too long Raster names based on shortnames and it creates the condition-output directory if it does not yet exist. Existing files in the Output/Rasters/CONDITION/ folder are overwritten (the code enforces overwriting and tries to delete any existing content (i.e., ensure that the output folder does not contain any important files).

Mapping[bookmark: outmaps]

The module produces an ArcGIS Pro project file (.aprx) and .pdfs in RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx. The map extents can be modified in the mapping.inp input file. For map modifications, read the above descriptions or the Mapping Wiki.

Interpretation

The success of features corresponds to their ecological sustainability and physical stability, which may positively correlate (i.e., high stability corresponds to high ecological sustainability). However, features such as gravel augmentation or grading have an inverse relationship between ecological sustainability and physical stability. For example, frequently mobile gravel injections create valuable habitat but are, by definition, unstable. In such cases, the lifespan maps need to be considered oppositely: Optimum areas for application correspond to regions with low lifespans (see more in Schwindt et al. 2019 [https://www.sciencedirect.com/science/article/pii/S0301479718312751]).

Quit module and logfiles

The GUI can be closed via the Close dropdown menu if no background processes are going on (see terminal messages). The GUI flashes and rings a system bell when it completed a run task. If layout creation and/or mapping were successfully applied, the target folder automatically opens. After execution of either run task, the GUI disables functionalities, which would overwrite the results and it changes button functionality to open logfiles and quit the program. Logfiles are stored in the RiverArchitect/ folder with the name logfile.log. Logfiles from previous runs are overwritten.

Maximum Lifespan Assessment (MaxLifespan)

	Introduction to maxium (best) lifespan mapping

	Quick GUIde to maximum lifespan maps

	Main window set-up and run

	Alternative run options

	Output

	Geofiles

	Mapping

	Quit module and logfiles

	Working principle

	Code modification: Add feature sets for maximum lifespan maps

Introduction to maxium (best) lifespan mapping[bookmark: actintro]

The MaxLifespan module serves for the GIS-based prioritization of river restoration features based on lifespan and design maps and it creates rasters, shapefiles, and pdf-maps. This Wiki page is structured as follows:

	Quick Guide to the application of the GUI with a description of required input (Rasters), alternative run options and output descriptions.

	Output and procedures for pdf-map generation.

	Code conventions and extension possibilities.

Maximum lifespan mapping uses lifespan maps produced with the LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] to identify the feature(s) with the highest lifespan for every pixel within the predefined feature groups. If the maximum pixel lifespan can be obtained by several features, the MaxLifespan module overlays polygons indicating the best feature types. For terrain modifications, all relevant features (grading, widening/berm setback, backwater enhancement as well as side channel or side cavity creation) are equally considered. Thus, the planner has to decide and manually manipulate feature polygons which are relevant for the particular project. Regarding toolbox features, the MaxLifespan module evaluates plantings against wood (engineered log jams) and angular boulders (rocks) placement to increase habitat suitability and stabilize terrain modifications. The user has to decide, which plantings, wood or angular boulders (rocks) polygons are relevant to keep for the final version. Finally, the MaxLifespan module uses complementary feature lifespan and design maps as well as terrain slope analysis to highlight areas where gravel augmentation, the incorporation of fine sediment in the soil and bioengineering features for terrain/slope stabilization are relevant. Also in this last step, the planner needs to decide, which feature polygons to keep. However, if the analysis of complementary features identifies unstable slopes, it is strongly recommended to take action in the concerned areas.

Quick GUIde to maximum lifespan maps[bookmark: actquick]

Main window set-up and run[bookmark: actgui]

The MaxLifespan module requires lifespan and design maps (i.e., the prior run of the LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] module is required). Then, the MaxLifespan module can be launched and the following window opens up.

[image: mlgui]

First, the module requires the choice of a feature set from the dropdown menu. Second, a CONDITION needs to be defined analog to the LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] module.

By default, the MaxLifespan will look up lifespan and design maps which are stored in the folder RiverArchitect/LifespanDesign/Output/Rasters/CONDITION/. This input directory can be modified by clicking on the Change input directory button.
The MaxLifespan will automatically look for Raster files beginning with “lf” or ds and containing the shortname of the considered features (see shortname list in the feature group overview). Please note that Raster names that do not start with either lf or ds and/or that do not contain the complete shortname of the considered features are not recognized by MaxLifespan. The background image of the maximum lifespan maps also refers to lifespan and design maps and corresponds to the Raster RiverArchitect/01_Conditions/CONDITION/back.tif.

The mapping checkbox provides the optional creation of maps with the creation of geofiles (Rasters and shapefiles). If the checkbox is selected, running the Geofile Maker also includes the successive runs of the Layout Maker and Map Maker. It is recommended to keep this box checked (default) because maximum lifespan mapping is fully automated and the procedure is fast.

Once all inputs are defined, click on “Run” and “Verify settings” to ensure the consistency of the chosen settings. After successful verification, the selected feature list and the verified condition change to green font.

Three “Run” options exist in the drop-down menu:

	Run: Geofile Maker prepares the optimum lifespan Raster and associated feature polygons (shapefiles) in the directories RiverArchitect/MaxLifespan/Output/Rasters/CONDITION/ and .../Output /Shapefiles/CONDITION/

	Run: Map Maker prepares maximum lifespan map assemblies (pdfs) in the directory RiverArchitect/02_Maps/CONDITION/ (more information on mapping).

Alternative run options[bookmark: actrun]

The principal run options of the GUI call the following methods:

	Run: Geofile Maker calls action_planner.geo_file_maker

	Run: Map Maker calls action_planner.map_maker

For batch-processing of multiple scenarios, it can be useful to run the geo_file_maker function in a standalone script as follows:

	Go to ArcGIS Pros Python folder and double-click one of the following:

C:\Program Files\ArcGIS\Pro\bin\Python\scripts\propy.bat or

C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\python.exe

	Enter import os

	Navigate to script directory using the command os.chdir("ScriptDirectory")

Example: os.chdir("D:/Python/RiverArchitect/MaxLifespan/")

	Import the MaxLifespan module: import action_planner as ap

	Launch Geofile Maker: ap.geo_file_maker(condition , feature type , ∗args), where args[0] is a boolean value for activating or deactivation of integrated PDF-mapping (default = False), args[1] is a string that indicates the unit system (either “us” or “si”; default = “us”) and args[2] can be an alternative input path of lifespan maps than the default directory (see above)

Example: ap.geo_file_maker(2008, "framework", True, "us", "D:/temp/")

This command calls the Geofile Maker for the condition “2008” for framework features, with activated mapping, U.S. customary units and it sets the Raster input path to D:/temp/.

Output[bookmark: actoutput]

Geofiles[bookmark: actoutgeo]

The principal output of the module’s Geofile Maker is one Raster called max_lf (stored in .../MaxLifespan/Output/Rasters/CONDITION/) and one shapefile per analyzed feature containing polygons of the feature’s best performing areas (stored in .../MaxLifespan/Output/Shapefiles/CONDITION/). Moreover, the module produces Rasters with names corresponding to the lifespan/design Raster names and feature shortnames, which essentially contain the same information as the feature shapefiles. These Raster files are side products from the production of the feature shapefiles.

Mapping[bookmark: actoutmaps]

The Map Maker uses predefined layout templates to overlay

	a background Raster (RiverArchitect/01_Conditions/CONDITION/back.tif),

	the best lifespan Raster (/MaxLifespan/Output/Rasters/CONDITION/max_lf.tif), and

	shapefiles of best-performing feature areas (/MaxLifespan/Output/Shapefiles/CONDITION/lf_feat... or ds_feat...).

The module enforces overwriting of existing Raster and shapefiles in the output folder (/MaxLifespan/Output/) and it tries to delete any existing content.
Before running Map Maker, the layout templates are stored in RiverArchitect/02_Maps/templates/river_template.aprx and they are named after the feature set type. The mapping wiki pages provide a list of layout names and explain possibilities for modifying the symbology, legend, or map extents. After running Map Maker, the map project file and PDFs are stored in RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx. Anew modifications should be made within this project file (.aprx), which is not overwritten, if River Architect identifies an existing CONDITION-project file.

Quit module and logfiles[bookmark: actquit]

The GUI can be closed via the Close dropdown menu if no background processes are going on (see terminal messages). The GUI flashes and rings a system bell when it completed a run task. If layout creation and/or mapping were successfully applied, the target folder automatically opens. After execution of either run task, the GUI disables functionalities, which would overwrite the results and it changes button functionality to open logfiles and quit the program. Logfiles are stored in the RiverArchitect/MaxLifespan/ folder and named logfile.log. Logfiles from previous runs are overwritten.

Working principle[bookmark: actprin]

The Geofile Maker uses the CellStatistics (with “Max” argument) command of arcpy’s Spatial Analyst toolbox to identify the best lifespans of features. In the case of features where only design Rasters are available (i.e., Raster units are either on/off (1/0) or dimensional indicators, for example, minimum grain sizes), the Geofile Maker converts any non-zero value of the design Raster to 0.8. The value of 0.8 is an arbitrarily chosen identifier with the hypothetical unit of years, where the only importance is that this identifier is larger than zero and smaller than 0.9. Thus, the identifier is smaller than any lifespan value and the CellStatistics’s “Max” corresponds to the lifespan value when lifespan Rasters are compared with design Rasters. In other words, the Geofile Maker prioritizes lifespan Rasters over design Rasters. This choice was made because the data quality of lifespan Rasters is better (higher data abundance) than the quality of design Rasters, considering that the data quality is a function of available layers (DEM, morphological unit, grain size, hydraulic Rasters, etc.). Therefore, pixels where no lifespan value but a design value is available to get assigned a value of 0.8. Finally, the 0.8-pixels are converted to the highest defined lifespan (see LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] module) based on the assumption that if the feature is constructed corresponding to the design criteria, its lifespan will be high. Note the difference: lifespan values are prioritized because of the better data quality and the max-years-value of design Raster-only pixels applies to a chain of safe constructive assumptions potentially resulting in high costs.

Recall that Other bioengineering features can take three values: (1) max years, if the terrain slope is greater than defined in the thresholds workbook and the depth to groundwater is lower than defined in the thresholds workbook (cf. LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign]); (2) 1.0 year, if the terrain slope is greater than defined in the thresholds workbook and the depth to groundwater is greater than defined in the thresholds workbook; (3) NoData, if the terrain slope is lower than defined in the thresholds workbook. Thus, where maximum lifespan maps indicate a 1.0-year lifespan, bioengineering features that are independent of the depth to the groundwater table are required. Such features typically imply the placement of angular boulders.

Code modification: Add feature sets for maximum lifespan maps[bookmark: actcode]

The comprehensive MaxLifespan module provides flexibility regarding input directories, layout modifications and mapping extents without modifications of the code. However, modifications of the feature sets (framework, toolbox and complementary) require code modifications. The relevant python classes are in the file cFeatureActions.py, notably class FrameworkFeatures(Director), class ToolboxFeatures(Director) and class ComplementaryFeatures(Director). These classes all inherit from the Director class which identifies and assigns lifespan and design Rasters in the input folder. The following code example indicates where single features can be added or removed from feature sets. It is a generalized code sample where “Framework”, “Plants”, “Other Bioengineering” and “Longitudinal connectivity” are replaced with “TYPE”. The feature FullName_i and shortname_i must comply with the feature terminology because also the MaxLifespan module uses the centralized feature identifier class that is stored in RiverArchitect/ModifyTerrain/cDefinitions.py.

class TYPEFeatures(Director):
 # This class stores all information about TYPE features
 def __init__(self, condition, *args):
 try:
 ## check if args[0] = alternative input path exists
 Director.__init__(self, condition, args[0])
 except:
 Director.__init__(self, condition)
 self.names = ["FullName_1", "FullName_2", ..., "FullName_n"] #--CHANGE HERE
 self.shortnames = ["shortname_1", "shortname_2", ..., "shortname_n"] #--CHANGE HERE
 self.ds_rasters = self.append_ds_rasters(self.shortnames)
 self.lf_rasters = self.append_lf_rasters(self.shortnames)

In addition, the choose_ref_layout(self, feature_type) function of the Mapper class in RiverArchitext/.site_packages/riverpy/cMapper.py needs to be updated:

 def choose_ref_layout(self, map_name):
 # type(map_name) == str
 map_name = str(map_name)
 if "lf" in map_name:
 if not ("mlf" in map_name):
 return "layout_lf"
 else:
 if "bio" in map_name.lower():
 return "layout_mlf_bioeng"
 if "maint" in map_name.lower():
 return "layout_mlf_maintenance"
 if "plant" in map_name.lower():
 return "layout_mlf_plants"
 if "terra" in map_name.lower():
 return "layout_mlf_terraforming"
 ...

Moreover, the choose_ref_map(self, feature_type) function of the Mapper class in RiverArchitext/.site_packages/riverpy/cMapper.py needs to be updated:

 def choose_ref_layout(self, map_name):
 # type(map_name) == str
 map_name = str(map_name)
 if "lf" in map_name:
 if not ("mlf" in map_name):
 return "layer_lf"
 else:
 if "bio" in map_name.lower():
 return "layer_mlf_bioeng"
 if "maint" in map_name.lower():
 return "layer_mlf_maintenance"
 if "plant" in map_name.lower():
 return "layer_mlf_plants"
 if "terra" in map_name.lower():
 return "layer_mlf_terraforming"
 ...

This also requires the creation of the layout and layer in RiverArchitect/02_Maps/templates/river_template.aprx and/or RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx.

[bookmark: define]River Reach Definitions[bookmark: introsetreaches]

 Modify Terrain (terraforming)

Modify Terrain (terraforming)

	Introduction to the ModifyTerrain module

	Quick GUIde to terrain modifications

	Threshold value-based terraforming (widening and grading)

	Run

	Alternative run options

	Output

	Working principles

	Code modification

	River Builder

Introduction[bookmark: mtintro]

The ModifyTerrain module can (re)model existing terrain DEMs based on threshold values or using the River Builder R [https://www.r-project.org/] package.
Threshold value-based terraforming uses DEMs of existing rivers and applies either widening (berm setback) [https://github.com/RiverArchitect/RA_wiki/River-design-features#berms] or grading [https://github.com/RiverArchitect/RA_wiki/River-design-features#grading], primarily to enable plant survival (for phreatophytes [https://en.wikipedia.org/wiki/Phreatophyte]). While the input DEMs are not necessarily required to be part of a River Architect Condition, the definition of Conditions is still required because the module uses maximum lifespan maps and depth to groundwater Rasters to identify candidate pixels for terraforming.

Quick GUIde to terrain modifications[bookmark: mtquick]

Main window set-up and run[bookmark: mtgui]

The GUI start-up takes a couple of seconds because the module updates reach information from a spreadsheet until the following window opens.

[image: mtgui]

To start with the ModifyTerrain module, first a feature set must be chosen from the drop-down menu, which is currently limited to “Widen” and “Grading”. Second, a Condition needs to be entered, which requires a click on the Verify button to update the GUI. This behavior differs from the LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] and MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan] modules and an ample revision of the ModifyTerrain module will align to the lifespan modules in the future.

Input: Set Reaches[bookmark: mtsetreaches]

This module enables analysis for specific river reaches, which can be renamed and the reach extents can be modified. The module analyzes all reaches which are defined in a spreadsheet stored in
ModifyTerrain/.templates/computation_extents.xlsx. For omitting the reach fragmentation, select IGNORE from the Reaches drop-down menu.

Input: Set Condition[bookmark: mtinp]

For terrain modifications, the module requires an input topo (DEM), which it looks up in the RiverArchitect/LifespanDesign/Input/CONDITION/ directory by default. The input directory can be modified by clicking on the “Change input DEM directory (optional)” button. Note that the input folder needs to contain a GeoTIFF DEM Raster with the name dem; other Raster names are not recognized and the input dem is crucial for any operation of the module.

Threshold value-based terraforming: Widening and Grading options[bookmark: mtdemmod]

The “Widen” and “Grading” features use the maximum required distance to the groundwater table, which is admissible for plantings. These threshold values are defined in the LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] module’s workbook RiverArchitect/LifespanDesign/Input/.templates/threshold_values.xlsx. The prior run of the MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan] module is required to enable ModifyTerrain reading Rasters containing the keywords grade or widen from the folder RiverArchitect/MaxLifespan/Output/Rasters/CONDITION/. Moreover, a depth to groundwater table Raster (GeoTIFF format) with the name d2w.tif is required in the directory RiverArchitect/01_Conditions/CONDITION/ (use the Get Started’s Populate Condition function to create a depth to the groundwater Raster).

The directory of maximum lifespan and depth to groundwater Rasters can be modified by clicking on the Change feature max. lifespan Raster directory (optional) button. This directory needs to contain GeoTIFF-Rasters, which have the keywords grade or widen in their filename.

Run[bookmark: mtrun]

All run options in the Run dropdown menu enables the Threshold-based DEM modification when Reaches, Features, and a CONDITION were defined.

Alternative run options[bookmark: mtaltrun]

The ModifyTerrain module has no standalone statement and it is recommended to use the GUI for launching the modules routines. If needed, the module can alternatively be imported and used as python package as follows:

	Go to ArcGIS Pros Python folder and double-click one of the following:

C:\Program Files\ArcGIS\Pro\bin\Python\scripts\propy.bat or

C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\python.exe

	Enter import os

	Navigate to Script direction using the command os.chdir("ScriptDirectory")

Example: os.chdir("D:/Python/RiverArchitect/ModifyTerrain/")

	Import the module: import cModifyTerrain as cmt

	Instantiate a ModifyTerrain object:

mt = cmt.ModifyTerrain(condition , unit_system, feature_ids , topo_in_dir , feat_in_dir , reach_ids)

unit_system must be either “us” or “si”

feature_ids is a list of features shortnames [https://github.com/RiverArchitect/RA_wiki/River-design-features#introduction-and-feature-groups]

topo_in_dir is an input directory for DEM and depth to groundwater table Rasters

feat_in_dir is an input directory for feature max. lifespan Rasters; for custom DEMs feat_in_dir can be a dummy directory

reach_ids is a list of reach names to limit the analysis

	The DEM Modification is launched by calling the ModifyTerrain object that outputs the calculation logfile with volume change information: logfile = mt()

	The analysis is limited to running the Volume Calculator when the ModifyTerrain object is called with arguments: logfile = mt(True, path_to_modified_DEM)

Raster Output[bookmark: mtoutput]

The module creates Rasters of modified DEMs and terrain difference Rasters for grading and/or widen features in the directory ModifyTerrain/Output/Rasters/CONDITION/). Raster names contain a reach identifier (r00, r01, … r07 corresponding to spreadsheet rows 6–13), part of the features shortnames. In addition, terrain difference Raster, "d" with either "neg" for excavation or "pos" for fill.

Mapping[bookmark: mtmap]

Please note that automated mapping is currently deactivated for the ModifyTerrain module. For mapping graded or widened terrain, use the VolumeAssessment module and link the ModifyTerrain output Rasters to the ArcGIS Pro project file RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx. The relevant layout names for the ModifyTerrain module are:

	volumes_grade_neg for mapping the terrain differences of parametrically (threshold-based) floodplain grading [https://github.com/RiverArchitect/RA_wiki/River-design-features#grading] within the Modify Terrain module (only excavation neg is meaningful)

	volumes_widen_neg for mapping the terrain differences of parametrically (threshold-based) river widening [https://github.com/RiverArchitect/RA_wiki/River-design-features#berms] within the Modify Terrain module (only excavation neg is meaningful)

Working principles[bookmark: mtprin]

The module can lower the terrain for grading and/or widen features to make relevant areas adequate for plantings. It looks up the maximum possible depth to groundwater for the considered planting types in RiverArchitect/LifespanDesign/Input/.templates/threshold_values.xlsx, cells J6:M6. The required lowering dz results from the minimum depth
to groundwater value of the latter cells:

required_d2w = min([plant1.threshold_d2w_up, plant2.threshold_d2w_up, plant3.threshold_d2w_up, plant4.threshold_d2w_up])

The condition DEM (act_dem) is lowered using the arcpy’s spatial analyst:

new_dem = Con((d2w > required_d2w), Float(act_dem - (d2w - required_d2w)), act_dem)

Code modification: Add routines for automated DEM modification[bookmark: mtcode]

Other routines for the automated generation of modified terrains can be added as follows:

	Create new function in the ModifyTerrain class (file ModifyTerrain/cModifyTerrain.py), which contains routines for creating a new DEM, for example:

 def create_new_dem(self, feat_id, extents):
 self.logger.info("")
 feature_name = self.features.feat_name_dict[feat_id]
 self.logger.info("* * * * * * " + feature_name.capitalize() + " * * * * * *")
 # set arcpy env
 arcpy.gp.overwriteOutput = True
 arcpy.env.workspace = self.cache
 if not (type(extents) == str):
 try:
 # XMin, YMin, XMax, YMax
 arcpy.env.extent = arcpy.Extent(extents[0], extents[1], extents[2], extents[3])
 except:
 self.logger.info("ERROR: Failed to set reach extents.")
 return (-1)
 else:
 arcpy.env.extent = extents
 # arcpy.CheckOutExtension('Spatial') # check out license if needed
	
 # get feature maximum lifespan raster (or any other input raster):
 feat_act_ras = self.get_action_raster(feat_id)
 # set NoData values to 0:
 feat_ras_cor = Con(IsNull(feat_act_ras), self.null_ras, feat_act_ras)
 self.logger.info(" >> Calculating DEM after terrain " + feature_name + " ... ")
	
 # assign a dem for modification (see descriptions below)
 if self.raster_info.__len__() > 0 and not ("diff" in self.raster_info):
 # use modified DEM if there was a prior automated modification
 self.logger.info(" ... based on " + str(self.raster_info) + "-DEM ... ")
 dem = self.raster_dict[self.raster_info]
 ...add other required Rasters
 else:
 # use condition DEM if there was no prior raster modification
 dem = self.ras_dem
 ...add other required Rasters
	
 # IMPLEMENT FORMULAE HERE
 new_dem = ...some function...
 # calculated difference DEM for volume calculation
 new_dem_diff_neg = ...
 new_dem_diff_pos = ...
	
 # update class dictionaries (communicate modifications)
 self.raster_dict.update({feat_id[0:3] + "_diffneg": new_dem_diff_neg})
 self.raster_dict.update({feat_id[0:3] + "_diffpos": new_dem_diff_pos})
 self.raster_info = feat_id[0:3]
 self.raster_dict.update({self.raster_info: new_dem})
	
 # arcpy.CheckInExtension('Spatial') # release license if necessary	

Note:

 + The `self , feat_id , extents` arguments are required for the implementation in the call-routine, where is a [features shortnames](River-design-features#introduction-and-feature-groups) `extent` and is an `arcpy.Extent` variable that limits DEM creation to this extent.

 + `self.logger.info()` sends messages to the logger, which are also printed on the *Python* terminal.

 + `dem = self.raster_dict[self.raster_info]` uses the latest DEM version; this is the `condition` DEM if no other terrain modification was applied before. Otherwise, for example if "grading" was used for the automated terrain modification before this function is used, `dem = self.raster_dict[self.raster_info]` points to the terrain DEM after grading.

	Implement the new function in the modification manager:

 def modification_manager(self, feat_id):
 if not(self.reach_delineation):
 extents = "MAXOF"
 else:
 try:
 extents = self.reader.get_reach_coordinates(self.reaches.dict_id_int_id[self.current_reach_id])
 except:
 extents = "MAXOF"
 self.logger.info("ERROR: Reach delineation recognized but not identifiable in input
 # START CHANGES FROM HERE ON
 if ("grad" in feat_id) or ("wide" in feat_id):
 self.lower_dem_for_plants(feat_id, extents)
 if ("feature_shortname" in feat_id):
 self.create_new_dem(feat_id, extents)

	Save edits

	The adapted code can now be executed using the alternative run options, where feature_ids = ["shortname of new feature"].

Hint: The new method can also be implemented in the GUI by adding self.featmenu.add_command(label="New Feature", command=lambda: self.define_feature("new ID") to def __init__(...) of the FaGui() class in the file modify_terrain_gui.py. This requires adding an if not(feature_id == "new ID"): ... else: ... statement in the self.define_feature function according to the function environment.

River Builder

Continue reading on River Builder’s own Wiki page.

 River Builder

River Builder

	Introduction

	Create Input Files

	Select Input Files

	Run

	Output

	More about River Builder

Introduction to River Builder [bookmark: rbintro]

River Builder [http://pasternack.ucdavis.edu/research/model-codes/river-builder] is an R [https://www.r-project.org/] package, which is available on CRAN [https://cran.r-project.org/web/packages/RiverBuilder/index.html]. This R [https://www.r-project.org/] package emulates near-census natural rivers as a function of site-specific, reach-averaged, geometric parameters. Pasternack et al. (2018a [https://onlinelibrary.wiley.com/doi/full/10.1002/esp.4411], 2018b [https://onlinelibrary.wiley.com/doi/full/10.1002/esp.4410]) introduce the ecomorphological and river classification principles implemented in River Builder [http://pasternack.ucdavis.edu/research/model-codes/river-builder].
The geometric parameters constitute synthetic river valleys, which represent nature-like alluvial channel beds and floodplains. The conceptual approach for designing synthetic river valleys with River Builder is described by Brown and Pasternack (2019) [http://www.sciencedirect.com/science/article/pii/S0012825218306160] and Brown et al. (2014) [http://www.sciencedirect.com/science/article/pii/S0169555X14001081].

[image: rbillu]

Synthetic river valley created with River Builder [http://pasternack.ucdavis.edu/research/model-codes/river-builder] (credits: Gregory B. Pasternack).

The synthetic river valley concept produces geodata that can be imported in GIS software (see above illustration) but without reference to real-world coordinates and hydraulic boundary conditions.
The boundary conditions for River Builder are defined by a user-defined input file and River Architect enables the creation of such input files with graphical support. As a result, River Builder can be run within River Architect (therefore rpy2 is required).
We are working on automating the creation of input files in River Architect to the extent that synthetic valleys can be translated into real-world coordinates and reflect hydraulic conditions of real rivers.

Please note that River Builder has an own detailed user manual [https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf]. This wiki primarily describes the usage of River Builder within River Architect.

To use the River Builder interface within River Architect, click on the Morphology tab and go to the ModifyTerrain sub-tab (default). Selecting the none Condition (confirm with a click on Select Condition) enables (unfreezes) the RIVER BUILDER frame.

[image: mtrbgui]

Create Input Files [bookmark: cinp]

Click on the Create RB Input.txt File button to create a new input file for River Builder. The following window will pop up.

[image: rbinp]

Make sure to define an input file name (top of the popup window) without entering a file ending. Define all required parameters (i.e., all parameters without any asterisk* in the left column of the popup window). A click on the Info buttons opens the parameter descriptions (adapted from River Builder’s user manual [https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf]).

The following list summarizes the required parameters and their default values (original descriptions from River Builder’s user manual [https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf]):

	DOMAIN PARAMETERS (IN METERS)

	Datum: FLOAT [1.0=default] - a fixed starting point of operation to measure changes of a specific property. Used for thalweg elevation. This datum is located at the downstream end of the synthetic river valley, and then the river goes up from there. Thus, if the datum is set as any number > 0, then it is guaranteed that all elevations in the valley will also be > 0. You may set any arbitrary number you wish. If you want to estimate the total elevation range of the thalweg along the river, then simply multiply your Valley Slope input by the Length input and that will give you the overall elevation range of the thalweg. For example, for a 1000 m long channel and a Valley slope of 0.01, then thalweg elevation range is going to span 10 m.

	Length: FLOAT [100.0=default] - the length of the x-axis of the river valley. This is only the channel length if the river is straight. If the river is sinuous, then this length is the valley length and the actual channel length will depend on the sinuosity. Sinuosity is computed by the model and reported in the Data.csv file, so you can compute the final channel length if you want to know it.

	X Resolution: FLOAT > 0.0 (e.g., 1.0 [default] = 1-m resolution) - the resolution of equally spaced data points spaced along the X-axis in units of meters. There is no limit to how fine the point spacing can be, other than computation time for your computer. The smaller this number, the longer the code will take to run. Use your judgment to decide how much detail you need given the scale of your river and the resolution of the sub-reach variability functions you are applying. There is no need for extra detail if the river is easily interpolated with fewer data.

	Channel XS Points: INTEGER > 1 [23=default] - the number of equally spaced points defining the channel’s cross-section. This is not applied outside the channel, only in it. Beyond the channel, River Builder provides you with points along the major breaklines, and then you can interpolate the terrain between those on your own later using a TIN approach. For field data collection in a U-shaped channel, people commonly use approx. 15-30 points. An odd number is wise if you want to have a line of output points exactly in the center of the channel.

	DIMENSIONLESS PARAMETERS (-)

	Valley Slope Sv: FLOAT [0.001=default] - the slope of the valley floor along the X-Z plane. It is used to calculate the overall channel slope with a given sinuosity and govern the incline/decline of the surrounding valley.

	Critical Dimensionless Bed Shear (aka “Shields) Stress* τ*, cr, D50: FLOAT [0.047=default] - If you are going to specify a bankfull depth, then set this value to zero. If you want to use the classic equation to establish a bankfull depth to just yield the shear stress needed to mobilize the bed for a specified bed material grain size, then you can use this. Common values used for this parameter are 0.03, 0.045, 0.047, or 0.06, depending on what size fraction you want to insure would be mobilized at bankfull flow. The equation that uses this input is Eq. (4) in Brown et al. (2014) [http://www.sciencedirect.com/science/article/pii/S0169555X14001081]. Read more on the dimensionless critical bed shear stress for example in Lamb et al. 2008 [https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JF000831].

	CHANNEL PARAMETERS (METERS)

	Bankfull Width Wbf: FLOAT > 0.0 [10.0=default] - the distance between bank tops on the X-Y plane, not counting any sub-reach variability functions.

	Bankfull Width Minimum: FLOAT >= 0.0 [5.0=default] - the minimum distance between the bank tops on the X-Y plane. This variable is specified to protect the user from making a mistake with sub-reach variability functions in which the banks would cross over, yielding an impossible outcome. This ensures that the river never has a zero or negative width. If you are confident in what you are doing, then you can set this to zero.

	Bankfull Depth Hbf, A: FLOAT [1.0=default] - the height between the thalweg elevation and then bank top and thalweg on the X-Z plane, not counting any sub-reach variability functions. Depending on channel slope and variability functions, the local bankfull depth can differ from this value.

	Median Sediment Size D50: FLOAT >= 0.0 [0.01=default] - the particle size of the material comprising the river bed. This is only used if one has left Hbf = 0 and wants to compute the bankfull depth value associated with the initialization of bed material transport for this specified grain size. This value is used in conjunction with the critical Shields stress value as explained earlier.

	FLOODPLAIN PARAMETERS (METERS)*:

	Floodplain Width*: FLOAT >= 0.0 [default] - double the horizontal distance from the bank top on one side of the river to the outer edge of the floodplain on the same side of the river. Note that if the floodplain has a lateral slope, then this value is still just the horizontal distance, not the slope distance on the floodplain surface. This value is the sum of horizontal floodplain distances for both sizes of the river, so keep that in mind when designing your floodplain. If this number is zero, then there is no floodplain, which yields a confined valley/canyon scenario. If it is a big number, then there is a very wide floodplain. This applies symmetrically to both sides of the river. If you want asymmetric floodplains, then that is handled with independent Left/Right Floodplain sub-reach variability functions.

	Outer Floodplain Edge Height*: FLOAT >= 0.0 [default] - the incremental increase in elevation from the bank top to the outer edge of the floodplain on the Y-Z plane. If this number is close to zero, then the floodplain is essentially flat. If it is high, then the floodplain is sloped.

	Terrace Width*: FLOAT >= 0.0 [default] - double the horizontal distance from the outer edge of the floodplain on one side of the river to the outer edge of the terrace on the same side of the river, making it terrace width. This value is the sum of horizontal terrace distances for both sizes of the river, so keep that in mind when designing your terraces. This applies symmetrically to both sides of the river.

	Outer Terrace Edge Height*: FLOAT >= 0.0 [default] - the incremental increase in elevation from the outer edge of the floodplain to the outer edge of the terrace on the Y-Z plane. If this number is close to zero, then the terrace is essentially flat. If it is high, then the terrace is sloped.

	Boundary Width*: FLOAT >= 0.0 [default] - double the horizontal distance from the outer edge of the terrace on one side of the river to an arbitrary point out on the valley floor on the same side of the river. This allows for a flat, wide domain that could be another terrace or just the open landscape beyond the alluvial river valley.

	USER-DEFINED FUNCTIONS*

	User Functions*: OWN WINDOW (multiple assignments possible [no default]) - Three types of functions (Sine, Cosine, and SineSQ) provide periodic oscillations. As simple as those are individually, remember that you can add as many of them as you want into one overall function, using addition, subtraction, etc. As shown in Brown et al. (2014) [http://www.sciencedirect.com/science/article/pii/S0169555X14001081], it is possible to get some very interesting and meaningful variability patterns with 2-4 SIN() functions added together, using different values for frequency, amplitude, and phase. One way to ascertain what those parameter value could be would be to perform harmonic analysis on real series of river variables, such as bed elevation, width, meander centerline, etc. You can extract all the periodic functions you want from that kind of analysis and use those in your design to whatever degree you wish. Because rivers often do exhibit linear trends in variables, such as width and depth, we have added the linear function for users to create that effect. Sometimes you want to have a function that is deterministic and oscillating, but non-periodic. The best application for this type of function would be for the meander centerline because channel alignment is not going to be truly periodic. To achieve this, we provide a Perlin noise function. To find out what sinuosity you get from a particular set of Perlin parameters, you have to run River Builder and look at the Data.csv file. That is a bit clunky, but it works.

	SUB-REACH VARIABILITY PARAMETERS (REQUIRES USER-DEFINED FUNCTIONS)*

	Centerline Curvature Function*: USER FUNCTION [no default] (multiple assignments possible) - Normally the sub-reach variability functions for centerline curvature would be set equal to those governing the meandering centerline. However, one application of the curvature value is with controlling the asymmetry of a channel’s cross-sectional shape. To provide greater flexibility with how a river’s XS shape changes along the river, we have created a decoupled centerline curvature variable. This variable does not affect the channels meandering. It only affects how channel asymmetry varies down the river. For example, let’s say that you did not want the deepest part of the cross-section to be at the outer bend of a meander, then you could use this to put the deepest part anywhere you want governed by the available variability functions. This is a highly complex tool to control compared to others, so only use it if you know what you are doing with your river design concept.

	Left Floodplain Function*: USER FUNCTION [no default] (multiple assignments possible) - whereas the channel is treated as one entity having a width, the floodplains have been segregated into independent units. This function governs variability in the location of the outer edge of the river left (i.e., left looking downstream) floodplain.

	Right Floodplain Function*: USER FUNCTION [no default] (multiple assignments possible) - governs variability in the location of the outer edge of the river left (i.e., left looking downstream) floodplain.

	Meandering Centerline Function*: USER FUNCTION [no default] (multiple assignments possible) - governs the shape of the river’s tortuous flow path (i.e., meandering or sinuosity) on the X-Y plane. At this time, it is not possible to make gooseneck loops, but the available functions offer a good range of flexibility to mimic diverse sinuosity values. If you do not care about the details of the pattern, but only want to match a sinuosity value, then it is recommended that you use the Perlin function and iteratively adjust the parameters until the sinuosity value in the Data.csv output file matches your target value.

	Thalweg Elevation Function*: USER FUNCTION [no default] (multiple assignments possible) - governs undulations in the bed elevation along the Thalweg on the X-Z plane. Used to create riffle-pool couplets.

	Bankfull Width Function*: USER FUNCTION [no default] (multiple assignments possible) - governs the downstream variability in the distance between bank tops on the X-Y plane. If you create an undulating function, be very careful that the banks do not cross over to create negative channel widths. We have implemented a minimum bankfull width variable to help avoid this, but it is wise to reason out the amplitude of your width function and not have to rely on that safety net. For longer river segments, try a linear function that increases the width in the downstream direction, consistent with geomorphic theory. You can find parameters for the downstream width increase in the geomorphic literature quite easily.

	CROSS SECTIONAL SHAPE

	Cross-Sectional Shape: STRING (“AU” [default], “SU” or “TZ”) - The shape of the cross-section on the Y-Z plane. Input must be AU, SU, or TZ(n), where n is the number of edges that defines the length of the trapezoidal base such that 0 < n < (Y-Z Increments). It is recommended that unless you really know what you are doing with AU or are starting from a good AU template file, then only use SU or TZ. If AU is selected, specify a Centerline Curvature. If TZ is selected, specify n: - Triangle: n = 0 - Trapezoid: 1 <= n <= (Y-Z Increments-2) - Rectangle: (Y-Z Increments-3) <= n <= (Y-Z Increments)

*All parameters with an asterisk are optional.

Please note: Each undefined parameter is assigned a default value and all parameters are METRIC. River Architect uses an internal conversion factor when U.S. customary units are selected in the main GUI’s Units dropdown menu.

A click on CREATE INPUT FILE writes the input file to RiverArchitect/ModifyTerrain/RiverBuilder/INPUT_FILE_NAME.txt.

Select Input Files [bookmark: sinp]

Once an input file is created, it can be selected by clicking on the Select RB Input.txt File button. Also, input files can be used when they were not created with the above described GUI, but it is important that these input files are located in RiverArchitect/ModifyTerrain/RiverBuilder/INPUT_FILE_NAME.txt. This restriction is necessary because River Builder can only read input files that are located in the same directory as the River Builder R script (riverbuilder.r).

Run River Builder within River Architect [bookmark: run]

River Architect uses the rpy2 [https://rpy2.readthedocs.io/] package to load River Builder [http://pasternack.ucdavis.edu/research/model-codes/river-builder] (also refer to the River Architect installation instructions).

With an input file selected, a click on the Run River Builder button launches River Builder. Running River Builder may take a couple of minutes. Pay attention to messages on the console, which may indicate if River Builder had issues with the provided inputs.

Output [bookmark: output]

River Builder writes output files to RiverArchitect/ModifyTerrain/Output/RiverBuilder/INPUT_FILE_NAME/ (note that the output is stored in the Output folder, which is one level above the RiverBuilder folder). The following output files are produced (original descriptions from River Builder’s user manual [https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf]):

	BoundaryPoints.csv
Contains keys that map to specific points in CartesianCoordinates.csv that comprise the boundary around a river’s floodplain. This is an essential input file for ArcGIS.

	CartesianCoordinates.csv
Contains comma-separated XYZ coordinates for the synthetic river valley. This is an essential input file for ArcGIS.

	Data.csv
Contains coefficients of variation, averages, standard deviations, channel slope, and other important information.

	ChannelElevation.png
Displays the elevation of the river’s channel meander.

	CrossSection.png
Displays the river’s cross-section at its midway point. The cross-section is bounded above by the river’s bank top and below by the thalweg.

	GCS.png
Displays the geometric covariance structures of bankfull width and thalweg elevation; thalweg elevation and the channel meander.

	LongitudinalProfile.png
Displays the side view of the river which consists of valley top, valley floor, bank top, and thalweg elevation.

	Planform.png
Displays the bird’s eye view of the river which consists of the channel meander, channel bank, valley floor, and valley top.

For rendering the output into 3D graphs, follow the following instructions from the River Builder’s user manual [https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf] (the steps refer to the usage of ArcMap and a Python script [https://github.com/riverarchitect/program/blob/master/ModifyTerrain/RiverBuilder/RiverBuilderRenderer.py] that is provided along with River Builder and included in the River Architect standard installation RiverArchitect/ModifyTerrain/RiverBuilder/RiverBuilderRenderer.py):

	Open ArcMap. Look for the Catalog tab on the far right of the interface. If it does not show, go to Windows -> Catalog from the top menu to have it opened.

	In Catalog, locate the directory in which the River Builder toolbox is stored. If the directory is not visible, select Connect to Folder from the Catalog toolbar, and select the desired directory.

	Once the desired directory is visible in Catalog, expand the toolbox it contains, right-click the River Builder tool, and go to Properties. Under the Source tab, enter the location of where the Python script RiverArchitect/ModifyTerrain/RiverBuilder/RiverBuilderRenderer.py is stored in your local machine. Click OK.

	The River Builder toolbox is now available for use on ArcMap. Select it, and a window will appear. Enter values for the following four inputs:

	Name: The label applied to each output file, i.e. <Name>_Layer.shp, <Name>_Boundary.shp, etc.

	Output Folder: The location in which an output folder named <Name> will be produced. That folder will contain all the output files generated by the script.

	XYZ File: The Cartesian coordinates file produced by the R code.

	Boundary Points: The boundary points file produced by the R code.

	When all the inputs are filled, click OK, and the script will run. After it is finished running, go to the <Name> folder in the output folder that you specified to access the newly generated shape and raster files.

About [bookmark: about]

River Builder is maintained by Prof. Gregory B. Pasternack, his co-workers, supporters, and friends. Please visit their website [http://pasternack.ucdavis.edu/research/model-codes/river-builder] to learn more about the general concepts and updates of River Builder.

 Volume Change Assessment

Volume Change Assessment

	Introduction

	Quick GUIde to terrain assessment

	Main window set-up and run

	Reaches

	Mapping

	Run

	Output

	Working principle

	Code modification: Change sensitivity threshold (lod) for terrain modification detection

Introduction[bookmark: vaintro]

The VolumeAssessment module compares two input DEM Rasters and calculates the volumetric change between both Rasters. The assessment produces workbooks containing reach-wise or project-wise volume differences (excavation and fill), terrain change DEMs, and pdf-maps. This chapter explains the module application in the following sections:

	Quick Guide to the application of the GUI with descriptions of input requirements and output descriptions.

	Outputs and procedures for pdf-map generation.

	Code conventions and extension.

Please note that an ArcGIS Pro 3D extension is required for running this module.

Quick GUIde to Volume Assessment[bookmark: vaquick]

Main window set-up and run[bookmark: vagui]

The GUI start-up takes a couple of seconds because the module updates reach information from an external workbook.

[image: vagui]

To start with the VolumeAssessment module, first, select a reach. The subdivision of the subsequently selected Rasters can be omitted by select IGNORE from the Reaches drop-down menu.
Second, select an input DEM Raster (GeoTIFF). Third, select a modified DEM Raster (GeoTIFF) that is to be compared with the input DEM Raster.

Input: Set Reaches[bookmark: vasetreaches]

For changing reach definitions, please refer to the reach wiki pages. Keep in mind that changing reach definitions also affects the LifespanDesign and the Modify Terrain modules.
A particularity of this module is that it enables running analysis for specific river reaches, which can be renamed and the reach extents can be modified. By default, the module analyzes all reaches which are defined in a spreadsheet stored in
/VolumeAssessment/.templates/computation_extents.xlsx.

[image: compextents]

Mapping[bookmark: vamap]

The Run: Map Maker uses layout files stored in the ArcGIS Pro project file RiverArchitect/02_Maps/templates/river_template.aprx. Running Map Maker for the first time for a CONDITION will produce a copy of the template project file (.aprx) that is stored in RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx. Before the running Map Maker for the first time for a CONDITION , ensure that the background layer points at the good background raster (typically this is RiverArchitect/01_Conditions/CONDITION/back.tif) The relevant layout names for the VolumeAssessment module are:

	volumes_cust_neg for mapping required excavation (or scour / erosion) of the input DEM to achieve the modified DEM.

	volumes_cust_pos for mapping required fill (or deposition) in the input DEM to achieve the modified DEM.

The VolumeAssessment module produces maps with the extents of the input raster by default. Refer to the Mapping wiki for more information on map extents, symbology, and legend modifications.

Run[bookmark: varun]

The Run drop-down menu includes the Volume Calculator and the Map Maker options. Please note that the Map Maker is activated only after the Volume Calculator was executed in the current River Architect session. Optionally, the bottom checkbox can be activated for automatically running the map creation with the Volume Calculator.

Output[bookmark: vaoutput]

Because the initial state and modified DEM Rasters may be freely selected and not necessarily correspond to a River Architect Condition, the VolumeAssessment uses PSEUDO_CONDITIONS that are derived from the directory and name of the modified DEM Raster.

Rasters[bookmark: vaoutras]

The module creates terrain change (volume difference) Rasters in the directory VolumeAssessment/Output/PSEUDO_CONDITION/). Raster names contain a reach identifier (r00, r01, … r07 corresponding to spreadsheet rows 6–13) when one or several reaches were selected. Otherwise, the Raster names start with a "ras" string. Moreover, the Raster names include an "exc" or "fill" string to indicate excavation (or scour / erosion) and fill, respectively.

Maps[bookmark: vaoutmaps]

The Map Maker (or activated checkbox) produces pdf maps of volume difference Rasters in RiverArchitect/02_Maps/PSEUDO_CONDITION/ (map preparation steps are above described and in the [[Mapping] wiki]).

Workbook (spreadsheets)[bookmark: vaoutspread]

The volumetric differences in m3 or cubic yards are reach-wise or Raster-wise written to a workbook in the directory VolumeAssessment/Output/PSEUDO_CONDITION/, where also the output Rasters are located. The workbook template (volumes_template.xlsx) is located in VolumeAssessment/.templates/ and must not be modified. When VolumeAssessment is run for the first time for a PSEUDO_CONDITION, it creates a copy of the workbook template, which is called PSEUDO_CONDITION_volumes.xlsx. VolumeAssessment makes two copies of the template sheet for excavation and fill, respectively. Thus, one of the spreadsheet copies is called excavate_YYYYMMDDHHhMM and lists the reach-wise / Raster-wise excavation volumes in the chosen unit system. The other spreadsheet copy is called fill_YYYYMMDDHHhMM and lists the reach-wise / Raster-wise fill volumes in the chosen unit system. The strings YYYYMMDD and HHhMM indicate the date and time of the program execution. Repeating runs of VolumeAssessment on the same modified DEM will append two more copies (excavate and fill) of the template sheet with the date-time indicator. It is recommended to cut-paste PSEUDO_CONDITION_volumes.xlsx in a VolumeAssessment/Products/ directory after every run to keep results well-arranged and to force the module to create a new PSEUDO_CONDITION_volumes.xlsx file for every run.

Working principles[bookmark: vaprin]

The modified DEM (PSEUDO_CONDITION) is subtracted from the input DEM to obtain difference DEMs indicating the dz differences in elevation. The module uses a level of change detection lod of 0.99 ft (or 0.305 m) to avoid the consideration of DEM imprecision because of pixel size-averaging (excavation): diff_dem_neg = Con(Abs(input_dem - mod_dem)>= lod, Abs(input_dem - mod_dem), 0.0) (and vice versa for fill).

The excavation and fill volumes result from arcpy’s SurfaceVolume_3d function, which requires an ArcGIS 3D extension:

volume_excavation = arcpy.SurfaceVolume_3d(diff_dem_neg, "", "ABOVE", 0.0, 1.0)

volume_fill = arcpy.SurfaceVolume_3d(diff_dem_pos, "", "ABOVE", 0.0, 1.0)

The volume_... variables are stored in a list that is finally written to the output workbook.

Code modification: Change sensitivity threshold (lod) for terrain modification detection[bookmark: vacode]

The lod variable serves for the elimination of virtual terrain differences that may result from pixel sizes and / or Raster transformations (see above explanations). The internal variable name for lod is self.volume_threshold and it is defined in the initiator of the VolumeAssessment class (VolumeAssessment/cVolumeAssessment). The assigned values of 0.99 ft (U.S. customary) or 0.305 m (SI metric) can be changed in class VolumeAssessment() -> def __init__(self, ...): -> # set unit system paragraph`:

 if self.units == "us":
 self.convert_volume_to_cy = 0.037 #ft3 -> cy: float((1/3)**3)
 self.unit_info = " cubic yard"
 self.volume_threshold = 0.99 # ft -- CHANGE lod US customary HERE --
 else:
 self.convert_volume_to_cy = 1.0 # m3
 self.unit_info = " cubic meter"
 self.volume_threshold = 0.30 # m -- CHANGE lod SI metric HERE --

 Stranding Risk Assessment

Stranding Risk Assessment

	Introduction to the Stranding Risk Module

	Quick GUIde to Stranding Risk Assessment

	Defining Travel Thresholds

	Methodology

	Interpolating Hydraulic Rasters

	Escape Route Calculations

	Calculating Disconnected Habitat Area

	Determining Qdisconnect

	Disconnection Frequencies

	Estimating Ramping Rates

	References

Introduction to Stranding Risk Module[bookmark: intro]

The Stranding Risk module can be used to map areas susceptible to stranding and calculate stranding risk metrics for a given fish species, lifestage, and flow reduction scenario. Output rasters include:

	wetted areas that become disconnected from the river mainstem

	discharge at which each area becomes disconnected

	average frequency at which each area disconnects

	habitat suitability of each area prior to disconnection

	estimated ramping rate

Quick GUIde to Stranding Risk Assessment[bookmark: guide]

[image: gui_start_stranding]

To begin using the Stranding Risk module, first select a hydraulic Condition.

Note: In order to determine where velocity is a barrier to fish passage, the selected condition must include velocity angle rasters. Otherwise, velocity barriers will not be considered. In order to create the disconnected_habitat output raster, cHSI rasters must have already been calculated for the applied Condition and Physical Habitat using the SHArC module. In order to create the disc_freq output raster, flows must have already been analyzed (Make flow duration curves) for the applied Condition and Physical Habitat.

Next, select at least one Physical Habitat (fish species/lifestage) from the dropdown menu. The Physical Habitat contains data specific to the fish species/lifestage. Physical Habitat data is used by the Stranding Risk module to determine if fish are able to traverse wetted areas by accounting for the organism’s minimum swimming depth and maximum swimming speed (Physical Habitat data are also used by SHArC to determine habitat suitability). These data can be viewed/edited via the drop-down menu: Select Physical Habitat –> DEFINE FISH SPECIES (scroll to the “Travel Thresholds” section of the workbook).

Once the desired condition and Physical Habitat(s) are selected, choose model discharges Qhigh and Qlow. This defines the range of discharges over which to apply the stranding risk analysis, simulating the changes in habitat connectivity for a flow reduction from Qhigh to Qlow.

Next, input a time period for the downramping. This is the amount of time (in minutes) over which the downramping is expected to occur. This parameter is used to estimate ramping rates as described in Estimating Ramping Rates.

Lastly, select an interpolation method. See Interpolating Hydraulic Rasters for more information.

For further explanation of the methodology used in the analysis, see Methodology.

Outputs are stored in StrandingRisk\Output\Condition_name\. These outputs include:

	interpolated rasters (h_interp, u_interp, va_interp): interpolated depth, velocity (magnitude), and velocity angle rasters. See Interpolating Hydraulic Rasters for more information.’

Outputs specific to the applied flow reduction are stored in the subdirectory StrandingRisk\Output\Condition_name\flow_red_Qhigh_Qlow. These outputs include:

	shortest_paths\: directory containing a raster for each model discharge in the range Qlow-Qhigh, indicating the minimum distance/least cost required to escape to the river mainstem at Qlow, subject to constraints imposed by the travel thresholds for the selected Physical Habitat. See Escape Route Calculations for more.

	disc_areas\: directory containing a shapefile for each model discharge indicating wetted areas which are effectively disconnected at that discharge. See Calculating Disconnected Habitat Area for more.

	disconnected_area.xlsx: a spreadsheet containing plotted data of discharge vs disconnected area.

	disconnected_habitat_specieslifestage.tif: a raster showing all wetted areas which become disconnected in the applied flow reduction scenario, weighted by the combined habitat suitability index (cHSI) at Qhigh (before the flow reduction occurs). See Calculating Disconnected Habitat Area for more.

	Q_disconnect.tif: a raster showing the highest model discharge for which areas are disconnected from the mainstem at Qlow. Locations that are not disconnected at any modeled discharge are assigned a value of zero. Thus, this map indicates locations and discharges below which stranding risks may occur. See Determining Qdisconnect for more.

	disc_freq.tif: a raster showing the historical frequency for which each area becomes disconnected, in number of times per year, confined to the season of interest for the analyzed species/lifestage. See Disconnection Frequencies for more.

	ramping_rate_time.tif: a raster showing the estimated ramping rate before disconnection occurs. See Estimating Ramping Rates for more.

Defining Travel Thresholds

Whether or not areas are considered to be connected/navigable for a given fish species/lifestage is dependent upon travel thresholds that are defined in the Fish.xlsx workbook (see SHArC for more details). These include a minimum swimming depth and maximum swimming speed. To view/modify the species/lifestage specific travel thresholds, use the drop-down menu: “Select Physical Habitat” –> “DEFINE FISH SPECIES”.

Methodology[bookmark: methods]

Interpolating Hydraulic Rasters

The analysis begins by performing an interpolation of the water surface elevation across the extent of the DEM. This step is taken in order to approximate how the water surface extends across floodplain areas, thus identifying the presence of disconnected pools that would not be captured by steady-state hydrodynamic model outputs. The interpolation is performed for each discharge as follows:

	The water depth raster is added to the DEM elevation to produce a water surface elevation (WSE) raster.

	the WSE is interpolated across the DEM extent using an Inverse Distance Weighted (IDW) interpolation scheme on the 12 nearest neighbors.

	The DEM is subtracted from the interpolated WSE raster to produce an interpolated depth raster. Only positive values are saved (negative values indicate an estimated depth to groundwater).

	Interpolated velocity and velocity angle rasters are created, where velocity is set to zero in the newly interpolated areas.

	Interpolated rasters are stored in StrandingRisk\Condition_name\h_interp, StrandingRisk\Condition_name\u_interp, StrandingRisk\Condition_name\va_interp. All interpolated rasters are saved with a corresponding .info.txt file which records the interpolation method and input rasters used in its creation.

The available interpolation methods are:

	IDW: Inverse distance weighted interpolation. Each null cell in the low flow depth raster is assigned a weighted average of its 12 nearest neighbors. Each weight is inversely proportional to the second power of the distance between the interpolated cell and its neighbor. Thus, the closest neighbors to an interpolated cell receive the largest weights. This method was found to have the best balance of computational speed and accuracy when tested via cross-validation.

	Kriging: Ordinary Kriging interpolation. This method also uses a weighted average of the 12 nearest neighbors, but weights are calculated using a semi-variogram, which describes the variance of the input data set as a function of the distance between points. A spherical functional form is also assumed for the fitted semi-variogram. Kriging is the most accurate interpolation method if certain assumptions are met regarding normality and stationarity of error terms. However, it is also the most computationally expensive method. This method was found to have comparable accuracy compared to IDW, but with significantly higher computational costs.

	Nearest Neighbor: The simplest method, which sets the water surface elevation of each null cell to that of the nearest neighboring cell.

Escape Route Calculations[bookmark: calc-escape]

The “shortest escape route” output maps (stored in the shortest_paths\ output directory) show the length/cost of the shortest/least-cost path from each pixel back into the mainstem of the river channel at Qlow, accounting for both depth and velocity travel thresholds. In this context, the mainstem is defined as the largest continuous portion of interpolated wetted area deeper than the minimum swimming depth at Qlow. Conceptually, the shortest escape route to the mainstem is found from each starting pixel as follows:

	If the starting pixel is already in the mainstem, it assigned a default value of zero. Otherwise, look at all wetted pixels adjacent to the starting pixel.

	Apply depth and velocity travel criteria (see below).

	If both the depth and velocity travel criteria are satisfied, the fish is considered to be able to move from the current pixel to the neighbor. An associated cost of traveling to the neighboring cell can also be computed.

	Apply this method iteratively to each reachable neighbor. The path which reaches a cell in the mainstem with the smallest total cost is the least-cost path to the mainstem.

Applying Depth and Velocity Travel Criteria[bookmark: hu-criteria]

The applied depth and velocity thresholds parameterize the ability of the target fish to travel throughout the river corridor. The criteria to satisfy for travel from cell A to adjacent cell B are defined by three criteria:

	Domain criterion: both cells A and B are wetted.

	Depth criterion: depth at cell B is > d_{min}.

	Velocity criterion: the fish can overcome the current at cell A to reach cell B traveling at v_f

[image: connect_vel]

From the center of each cell, the area is divided into 8 octants corresponding to the 8 neighboring cells, with each octant centered on the direction to its neighboring cell and spanning 45°. If it is possible to add the water velocity vector (𝑣𝑤) to a vector with the magnitude of the maximum swimming speed (𝑣𝑓) to yield a vector (𝑉) falling within an octant, then the velocity threshold criteria is satisfied for travel to the corresponding neighboring cell. A specific example is shown in this diagram where the resultant velocity vector 𝑉 points into the upper quadrant, thus the velocity threshold criteria is satisfied for travel to the upper neighbor. Octants are colored blue/red based on whether the criteria is/is not satisfied for travel in that direction.

Least cost path calculations are implemented in a computationally efficient way by constructing a weighted, directed adjacency graph (stored as a dictionary) and then dynamically traversing the graph working outwards from the mainstem to find shortest path lengths using Dijkstra’s algorithm (see explanation below):

[image: connect_graph]

Applying the travel criteria at each cell yields a set of neighboring cells for which travel is possible. Each cell which can reach other cells or be reached is represented as a vertex of the graph. Reachability of neighboring vertices is represented by edges connecting the vertices, with an arrow symbol indicating the direction of possible travel (edges without arrows indicate travel is possible in both directions). For each edge, an associated cost of traveling along the edge is calculated, yielding a weighted digraph to represent possible fish travel and the associated costs. The least-cost path leading from each vertex to any of the vertices in the target area (corresponding to river mainstem at a lower discharge) is then computed and the path length/cost is stored as a value in the output raster at the location of the starting vertex. Here the target vertices are shown in gold and the least-cost path from point A is shown in blue (where the cost function applied is Euclidean distance).

Calculating Disconnected Habitat Area[bookmark: calc-habitat]

Even if there is wetted area connecting two locations, they may not be considered connected in the context of fish passage. This is because low water depths or high velocities may effectively act as “hydraulic barriers”, limiting fish mobility. The applied Physical Habitat contains threshold values for the minimum swimming depth and maximum swimming speed. After escape routes are calculated for a given discharge, the resultant path length raster shows which areas are able to reach the river mainstem for the given hydraulic conditions and biological limitations. Wetted areas in the corresponding interpolated depth raster for which a least-cost path cannot be calculated are considered to be disconnected areas. These disconnected areas are then cropped within the wetted area at Qhigh (not interpolated), as floodplains outside the Qhigh wetted area are assumed to not be active for the simulated flow reduction. Resultant disconnected areas are saved to a shapefile for each discharge in the disc_areas output directory.

Once disconnected areas have been calculated, they are weighted by the combined habitat suitability index (cHSI) at Qhigh for the target Physical Habitat. The resultant raster is stored as disconnected_habitat in the output directory. Since cHSI serves as a proxy for fish density in habitat-limited environments, the cHSI at Qhigh in areas that become disconnected by the flow reduction serves as a spatially-distributed stranding risk metric.

Determining Qdisconnect

The Q_disconnect map outputs provide estimates of the discharges at which wetted areas become disconnected from the mainstem of the river channel. Estimating these discharges is done as follows:

	Assign all pixels wetted at the highest discharge a default value of zero.

	Iterating over discharges in ascending order, pixels within disconnected area polygons are assigned a value of the corresponding discharge.

	The resultant raster is saved as the Q_disconnect.tif map output.

Note that the default value of zero indicates pixels wetted at the highest discharge but not present within any of the disconnected area polygons. Other values indicate the highest modeled discharge for which the pixel is disconnected from the channel mainstem.

[image: Q_disc_ex]

Disconnection Frequencies [bookmark: disc-freq]

For each disconnected area, Q_disconnect can be combined with the hydrologic flow record in order to calculate the average number of potential stranding events occurring per year. This is generated by computing the total number of times mean daily flow drops below Q_disconnect during the season of interest for the applied species/lifestage (Physical Habitat) and dividing by the number of years on record.

A disc_freq output map will be produced provided that flows have already been analyzed (Make flow duration curves) for the applied Condition and Physical Habitat.

Estimating Ramping Rates [bookmark: ramping-rates]

Ramping rates are estimated by applying the following assumptions:

	the flow reduction scenario is characterized by a linearly downramping hydrograph from Qhigh to Qlow over the input time period

	Downstream attenuation of the hydrograph is not considered

Ramping rates are estimated via linear approximation, using the difference in depths between model discharges prior to disconnection.

The ramping rate output raster is stored as ramping_rate_###min.tif, where ### corresponds to the input time period over which the downramping occurs.

References

Travel thresholds used to define Physical Habitats in Fish.xlsx can be estimated from the following sources:

Bell, M. C. (1991). Fisheries Handbook of Engineering Requirements and Biological Criteria (3 ed.). Portland, Oregon. [https://www.fs.fed.us/biology/nsaec/fishxing/fplibrary/Bell_1991_Fisheries_handbook_of_engineering_requirements_and.pdf]

CDFG. (2012). Standard Operating Procedure for Critical Riffle Analysis for Fish Passage in California DFG-IFP-001, updated February 2013. California Department of Fish and Game, DFG-IFP-00(September), 1–25. [https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=150377]

Katopodis, C., & Gervais, R. (2016). Fish swimming performance database and analyses. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/002. [https://waves-vagues.dfo-mpo.gc.ca/Library/362248.pdf]

U.S. Forest Service FishXing Data Table [http://www.fsl.orst.edu/geowater/FX3/help/SwimData/swimtable.htm] (various sources)

 Project Maker

Project Maker

	Introduction to the Project Maker module

	Quick GUIde to a project assessment

	Prerequisites

	Main window set-up and run

	Input: Variables and automatically generated files

	Input: Project Area Polygon shapefile

	Input: Delineate Plantings shapefile

	Cost quantity assessment and the cost master workbook

	Terraforming

	Vegetation plantings and supporting features

	Terrain stabilization

	Nature-based engineering features (other)

	Other civil engineering works

	Other costs and remarks

	Mapping of construction elements

	Ecological benefit assessment (Calculate SHArea)

	Additional input and requirements

	Run SHArea calculation

	Output

Introduction to the Project Maker module[bookmark: pmintro]

The ProjectMaker module guides through the half-automated assessment of cost-relevant quantities and ecological project benefits. A “restoration plan” or project proposal for a restoration plan herein designates an isolated restoration measure that can be delineated with an own ProjectArea.shp shapefile. versions of a restoration plan may refer to terraforming options or other planning Conditions. A project proposal is prepared for (preliminarily) versions of a restoration plan including relevant nature-based engineering features (i.e., vegetation plantings, stabilizing features such as the placement of angular boulders, and anchored streamwood) and it evaluates cost-relevant quantities. A project cost table uses the cost-relevant quantities for a preliminary cost estimate. The habitat utility in terms of net gain in Seasonal Habitat Area (SHArea) for target fish species determines the project return in “US$ per [acre or m2] of newly created SHArea”. This Wiki page is organized as follows:

	ProjectMaker GUI usage

	Generate a project plan and run a cost-quantity assessment

	Map final designs

	Calculate gain in SHArea

Quick GUIde to a project assessment[bookmark: pmquick]

Prerequisites[bookmark: pmprereq]

Ensure that the following steps were executed in order to generate the required geodata for creating a project proposal:

	If terraforming applies:

	The SiteName restoration terraforming plan was verified with 2D hydrodynamic modeling

	The River Architect’s VolumeAssessment module was applied to calculate excavation / fill volumes.

	The LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] and MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan] modules were executed for plantings and other nature-based engineering features. Thus, the following directories should exist and contain plantings and other nature-based engineering feature rasters:

	Plantings:

	RiverArchitect/LifespanDesign/Output/Rasters/CONDITION_lyr20/

	RiverArchitect/MaxLifespan/Output/Rasters/CONDITION_lyr20/

	Other nature-based engineering features:

	RiverArchitect/LifespanDesign/Output/Rasters/CONDITION_lyr20/

	RiverArchitect/MaxLifespan/Output/Rasters/CONDITION_lyr20/

	The SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module was applied to the pre-project (initial) condition and the “with implementation” (“as-built”) condition.

Main window set-up and run[bookmark: pmgui]

The below figures shows the ProjectMaker GUI at startup.

[image: guipm]

The creation of a cost-benefit assessment requires the step-wise definition of variables and calculation beginning at the top of the GUI and moving forward to the bottom. The following sections provide details regarding input requirements and calculations of every step.

Input: Variables and automatically generated files[bookmark: pminp1]

The assessment uses the following parameters and formats, which can be entered in the GUI:

	Project version (or vii) is a “v” + 2-digits (ii) version number (string), for example, v10 (other 3-digit strings are also allowed)

	Project name is a string (e.g., of a particular site) written in CamelCase, for example, RavineConfluence

Click on the VALIDATE VARIABLES button to verify that the variables entered are correct. A successful validation creates a copy of the template project structure (RiverArchitect/ProjectMaker/.templates/Project_vii_TEMPLATE/), which is typically saved as RiverArchitect/ProjectMaker/ProjectName_vii/. The variable validation opens an info-box, a project assessment workbook (.xlsx), and a mapping project (.aprx in ArcGIS Pro) that invites to create project-specific files. The required actions include:

	WORKBOOK (ProjectName/ProjectName_assessment_version.xlsx)

The workbook contains a spreadsheet named costs, where unit costs and quantities are evaluated. The from_geodata sheet will contain quantities such as area (in square meters or acres) of vegetation planting types. The numbers in the from_geodata tab are generated by a subset of codes that use geodata, which require manual actions as described in the next steps. After running the cost-quantity assessment, verify that the cells containing automatically calculated costs in the costs sheet link to the correct cells in the from_geodata sheet.

	MAPPING (ProjectName/ProjectMaps.aprx)

The copy of ProjectMaker’s template project structure contains an ArcGIS Pro project file (ProjectName/ProjectMaps.aprx) with predefined layouts and layers that may require updates to site-specific geofiles (shapefiles and rasters). Project-specific geofiles (shapefiles and rasters) need to be created as described in the following sections.

Input: Project Area Polygon shapefile[bookmark: pminp2]

To determine cost-relevant quantities for a site-related restoration plan, a manual delineation of the project site is necessary (e.g., by using the template layouts provided in ProjectName/ProjectMaps.aprx).

	Create a new polygon-shapefile in ProjectName/Geodata/Shapefiles/ (read more on arcgis.com [https://pro.arcgis.com/en/pro-app/help/editing/create-polygon-features.htm]), name it ProjectArea, and select the project Coordinate System (Current Map). Click on Run.

	Remove the newly created layer from layout’s Contents tab, double-click on the existing Project area layer -> Layer Properties opens up -> go to the Source tab -> click on Set Data Source ... -> Select the newly created /Shapefiles/ProjectArea.shp file -> click OK.

	In the layout’s Contents tab, right-click on the ProjectArea layer, then Attribute Table. In the Attribute Table, click on the top-left Field: Add button. Name the field AreaCode, select a Text in the Data Type column and 50 in the Length column. Click below the new field to and add another field (Click here to add a new field label) with the following properties: Field Name = gridcode, Data Type = Short data type, Number Format = Numeric, Precision = 0, and Scale = 0 field named gridcode. Go to ArcGIS Pro’s Fields ribbon (top of the window) and click Save. Close the Fields: Project area (…) tab (the one where the fields were previously added).

	Delineate project area

	Optional: Import modified terrain to visualize boundaries of terraforming.

	In ArcGIS Pro’s Edit ribbon (top of the window), click on Create (ensure that the ProjectArea layer is selected in the Contents tab) > A Create Features opens.

	In the Create Features tab, click (highlight) on ProjectArea, then on Polygon.

	Draw a polygon around the designated project area (finish with the F2-key).

	Go to the Attribute Table tab and type Restoration zone in the AreaCode field and 1 in the gridcode field.

	Save edits.

Input: Plantings shapefiles [bookmark: pminp3]

Project Maker will place plants only where it makes sense and removes existing plants where necessary. An overlay of the above-created project area polygon over recent satellite image shows, where existing plants intersect with projected actions and where these plants may need to be cleared (removed). A PlantExisting.shp shapefile with polygons delineating these intersects needs to be created and drawn as follows in the ProjectName/ProjectMaps.aprx-file:

	In the Catalog tab, open the folder tree ProjectName/Geodata/Shapefiles/ (double click on the folder to make it appear in the lower box).

	Create a new polygon-shapefile in ProjectName/Geodata/Shapefiles/ (read more on arcgis.com [https://pro.arcgis.com/en/pro-app/help/editing/create-polygon-features.htm]), name it PlantExisting, and select the project Coordinate System (Current Map). Click on Run.

	Remove the newly created layer from layout’s Contents tab, double-click on the existing Existing plants (all) layer -> Layer Properties opens up -> go to the Source tab -> click on Set Data Source ... -> Select the newly created .../Shapefiles/PlantExisting.shp file -> click OK.

	In the layout’s Contents tab, right-click on the PlantExisting layer, then Attribute Table. In the Attribute Table, click on the top-left Field: Add button. Name the field ActionType, select a Text in the Data Type column and 50 in the Length column. Click below the new field to and add another field (Click here to add a new field label) with the following properties: Field Name = gridcode, Data Type = Short data type, Number Format = Numeric, Precision = 0, and Scale = 0 field named gridcode. Go to ArcGIS Pro’s Fields ribbon (top of the window) and click Save. Close the Fields: Project area (…) tab (the one where the fields were previously added).

	Delineate existing plantings area:

	Ensure that a valid background image is linked to the background layer (Properties -> Source tab).

	In ArcGIS Pro’s Edit ribbon (top of the window), click on Create (ensure that the PlantExisting layer is selected in the Contents tab) > A Create Features opens.

	In the Create Features tab, click (highlight) on PlantExisting, then on Polygon.

	Draw polygons around existing plantings that are visible in the background (satellite image) project area, within the zone where the modified DEM rasters indicate terrain modification (finish polygons with the F2-key).

	Go to the Attribute Table tab and type Existing (text) in the ActionType field and 1 (short integer) in the gridcode field.

	Once all visible plantings within the project area are delineated, save the edits.

Terraforming may require clearing of existing vegetation in the project area. In this case, use the above created PlantExisting.shp as template to delineate plants to remove (to be cleared): [bookmark: pminp31]

	In the Catalog tab, open the folder tree ProjectName/Geodata/Shapefiles/ (double click on the folder to make it appear in the lower box).

	Make a copy of a new polygon-shapefile in ProjectName/Geodata/Shapefiles/PlantExisting.shp and name it PlantClearing.shp in the same folder.

	In the map Contents tab, double-click on the existing Clearing of Shrubs layer -> Layer Properties opens up -> go to the Source tab -> click on Set Data Source ... -> Select the newly created .../Shapefiles/PlantClearing.shp file -> click OK.

	Delineate existing plantings to be removed (clearing):

	In the layout’s Contents tab, right-click on the PlantClearing layer, then Attribute Table.

	Highlight all polygons of existing plants that do not need to be removed. Press Delete to remove these plant polygons from the clearing list.

When highliting existing plantings for clearing, remember that in river restoration and habitat enhancement projects “clearing” should limit to the absolutely required minimum. That means: Delete as many polygons of existing plants as possble from PlantClearing.shp.

	Once all non-clearing plants are removed, save the edits.

	Project Maker will not place any plant where existing plants are, even though when these are highlighted in the the PlantClearing shapefile. Therefore, consider to remove the polygons contained in PlantClearing.shp from PlantExisting.shp.

Save and close ProjectName/ProjectMaps.aprx.
Note: Both PlantExisting and PlantClearing shapefiles are not mandatory for running Project Maker, but recommended.

Cost quantity assessment and the cost master workbook[bookmark: pmcq]

The ProjectName_assessment_vii.xlsx is subsequently referred to as the cost master workbook. The workbook is automatically generated as a template-copy and it contains two cost ... tabs. Important: As a function of the unit system (U.S. Customary or SI metric), only keep the relevant cost worksheet and delete the other one (see below figure). Rename the retained costs tab to costs.

[image: pmdeltab]

The prices contained in the cost master workbook are in US$ and may be adapted to fit local construction costs. The following sections describe steps and requirements for the assessment of cost-relevant quantities with the cost master workbook.

Terraforming[bookmark: pmterraf]

The VolumeAssessment module evaluated terrain excavation and fill volumes. VolumeAssessment created workbooks featuring terraforming volumes in cubic meters/yards in the directory RiverArchitect/VolumeAssessment/Output/PSEUDO_CONDITION_volumes.xlsx. Optionally, these workbooks can be copied to a PSEUDO_CONDITION_volumes.xlsx workbook in the project folder.

Recall: PSEUDO_CONDITION_volumes.xlsx has to tabs: (1) excavate_YYYYMMDDHHhMM and (2) fill_YYYYMMDDHHhMM. Copy the terraforming volumes from either of these two spreadsheets to the cost master workbook’s (ProjectName_assessment_vii) terraforming_volumes spreadsheet (cells are highlighted, only values).

The template’s unit costs of US$ 23.00 per cubic yard (or EUR 23.00 per m3) include short transport distances (< 1 km) and material storage. It is hypothesized that the smaller value (i.e., either the excavate or the fill volume) is incorporated in the costs of the higher value because the smaller volume can be reused on-site. The costs for terraforming are evaluated in cell G8 of the cost() tab of CONDITION_volumes.xlsx, based on the excavate and fill volumes that need to be copied to the terraforming_volumes tab of CONDITION_volumes.xlsx. The following formula applies (vol refers to the terraforming_volumes spreadsheet):

costs!G8 = costs!D8 · max(vol!C5, vol!C6)

Vegetation plantings and supporting features[bookmark: pmplants]

Before the most reasonable vegetation plantings are implemented into the project plan, the LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] and MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan] modules need to be run based on anew 2D simulations made with the terraformed DEM. The resulting (maximum) lifespan rasters need to be available in the directories RiverArchitect/LifespanDesign/Output/Rasters/CONDITION_lyr20/ and RiverArchitect/MaxLifespan/Output/Rasters/CONDITION_lyr20/.

Define critical lifespans[bookmark: pmactm]
Before plantings can be placed, River Architect wants to know the critical threshold for lifespans that a plant species needs have to be applicable (2.5 may be a reasonable estimate here). For example, if the field Do not plant where expected lifespans are less than = 2.5, River Architect will only place plantings with an expected lifespan of 2.5 years or more.
In addition, River Architect requires the definition of a critical lifespan of vegetation plantings, which require additional nature-based engineering support. For example, if the field Stabilize plants where expected lifespans are less than = 10.0, River Architect will add supporting nature-based engineering features where the best performing plant species lifespan is less than 10.0 years.
Note that the second value needs to be higher than the first value to reasonable results.

Place plantings
The GUI’s Place best vegetation plantings button launches a python function that picks up these maximum lifespan rasters, limits there extents to the ProjectDelineation Polygon and evaluates relevant quantities for construction purposes. Read the logfile carefully and ensure that no error or warning messages occurred. If error messages occurred, check the geodata sources and error messages, ensure that the costs master file (ProjectName_assessment_vii.xlsx) is closed and traceback error messages. Re-run Delineate Plantings and traceback error messages until no error messages occur anymore.

After a successful run, Delineate plantings has written vegetation plantings areas to the cost master workbook’s from_geodata spreadsheet. The costs spreadsheet automatically evaluates plantings in the Vegetation plantings frame. Nevertheless, double-check assigned cell links to the from_geodata spreadsheet and close the cost master workbook. Delineate plantings saves the cropped maximum lifespan rasters and shapefiles with area summaries in the /Rasters/ and /Shapefiles/ subfolders. If the cell links in the automatically opened cost master workbook’s costs spreadsheet are correct, save and close the workbook.
Note: Project Maker places best plants in alphabetic order. In the case of the pre-defined plant species, that means, first a pixel is tested for its suitability for Box Elder, then for Cottonwood, then White Alder, and then Willows. If a pixel already got assigned a plant species, it will not be tested again for other plant species. For example, if a pixel got assigned Box Elder, it will not be considered for all other plant species.

Stabilize plantings[bookmark: pmbio1]
Even though the vegetation plantings maximum lifespan maps identify the optimum plant species according to the highest lifespans, the projected vegetation plantings may be associated with low lifespans. Therefore, supporting (stabilizing) features such as engineered log jams (here: single anchored logs or root wads) may be required. The GUI’s Stabilize plantings button launches a python function that adds stabilizing nature-based engineering features such as anchored wood logs to planting areas associated with the user-defined minimum plantings lifespan. The Stabilize plantings function uses the following priorities of stabilizing features:

	Large wood logs (diameters defined in RiverArchitect/LifespanDesign/.templates/threshold_values.xlsx) if their lifespan is higher than the Critical plantings lifespan.

	Engineered (anchored) wood logs, where maximum lifespan maps indicate convenient applicability.

	Vegetative nature-based engineering features (pre-defined in cost master workbook: brush layers; alternatively, fascines or geotextile can be linked from costs!F30:F33 to from_geodata!C16*…, where the depth to the water table does not exceed the threshold values defined in RiverArchitect/LifespanDesign/.templates/threshold_values.xlsx.

	Mineralic nature-based engineering features (rock paving), where the depth to the water table is insufficient for vegetative stabilization and where the terrain is steeper than the threshold values defined in RiverArchitect/LifespanDesign/.templates/threshold_values.xlsx.

	Angular boulders where high dimensionless bed shear stress predictions prohibit the utilization of any above feature.

Place best vegetation plantings writes construction-relevant numbers for vegetation planting stabilization to the cost master workbook’s from_geodata spreadsheet. The costs spreadsheet automatically evaluates stabilizing feature quantities in the nature-based engineering (stabilization) and nature-based engineering (other) frames. Nevertheless, check the assigned cell links to the from_geodata spreadsheet and adapt feature types if required. Moreover, Stabilize plantings creates a shapefile called (Plant_stab.shp) in ProjectName/Geodata/Shapefiles/. Check the cell links in the automatically opened cost master workbook’s costs spreadsheet (cell links to the from_geodata spreadsheet). Finally, save and close the workbook.

Stabilize terrain[bookmark: pmter]

The Terrain Stabilization frame enables the identification of areas that require additional support with nature-based engineering features to yield a target lifespan that can be defined in the field Critical lifespan. For example, if new terraforms are intended to persist at least 20 years, set Critical lifespan=20.
A click on the Stabilize terrain button launches the calculations, where nature-based engineering features are placed in the same hierarchical order as before. Besides, the terrain stabilization calculates a stable grain size Raster for the provided Critical lifespan. The control variables of τ*,cr (default 0.047) and Manning’s n [https://en.wikipedia.org/wiki/Manning_formula#Manning_coefficient_of_roughness] can be defined by clicking on the Set stability drivers button. To learn more about the stable grain size computation, please refer to the parameter calculation and stable grain size Raster creation.

The Terrain Stabilization produces writes relevant surfaces to the from_geodata spreadsheet in costs master file (ProjectName_assessment_vii.xlsx) and produces the following geofiles:

	Raster with stable grain (boulder) sizes ProjectMaker/ProjectName_vii/Geodata/Rasters/terrain_boulder_stab.tif

	Shapefile with relevant nature-based engineering features (see above definitions) ProjectMaker/ProjectName_vii/Geodata/Shapefiles/Terrain_stab.shp

Check the cell links in the automatically opened cost master workbook’s costs spreadsheet (cell links to the from_geodata spreadsheet). Finally, save and close the workbook.

Manual placement of nature-based engineering features[bookmark: pmbio2]

Additional habitat can be created with cover features (i.e., engineered logs jams or root wads) at locations that result from an expert assessment. To implement cover features, open ProjectName/Geodata/ProjectName/ProjectMaps.aprx to do the following:

	Create a new polygon-shapefile in ProjectName/Geodata/Shapefiles/ and name it StreamWood.

	Remove the newly created StreamWood layer from layout’s Table of Contents, double-click on the existing ELJs (Cover habitat) layer -> Layer Properties opens up -> go to the Source tab -> click on Set Data Source… -> Select the newly created ProjectName/Geodata/Shapefiles/StreamWood.shp file -> click OK.

	Start editing the ELJs (Cover habitat) layer.

	Draw engineered log jams and root wads as 10 ft x 10 ft (3.1 m x 3.1 m) rectangles.

Design hints:

Engineered log jams and root wads must not be placed in side channels or anabranched sections of the rivers. However, these features can add “cover” habitat in backwater zones or reconnected ponds.

A save premise is to keep a distance of at least 100 ft (or approximately 30 m) between individual log jams or root wads. To respect the distances, draw a circle with a diameter of 2·100 ft (or approximately 2·30 m) and place single engineered log jams in the middle of the circles.

	Save the edits and stop editing.

	Write the number of drawn streamwood elements to the cost master workbook’s (ProjectName_assessment_vii) costs spreadsheet (nature-based engineering frame).

Other civil engineering works[bookmark: pmciv]

Site access, terrain acquisition or culverts may be required and contribute to the project costs. Satellite images and GIS measurement tools help to identify the required length of new roads or roads that need to be developed.

The length of new roads can be evaluated (e.g., by drawing paths transferring the path length in yd’ [length yard] or m’ [length meter] to the cost master workbook’s (ProjectName_assessment_vii) costs spreadsheet; cf. Civil engineering & other frame). For later revision, export the drawn paths to a newly created folder (e.g., ProjectName/Geodata/Shapefiles/) as polyline shapefile or *.kmz file.

The resulting costs need to be manually entered in the costs master workbook’s (ProjectName_assessment_vii) costs spreadsheet (Civil engineering & other frame).

Markups, permitting, and other costs[bookmark: pmcadd]

The final project costs include site mobilization and demobilization as well as unexpected costs. Moreover, permitting, markups (such as overhead, profit, and insurance) and engineering fees are added as percentages of costs for construction works at the bottom of the cost master workbook’s (ProjectName_assessment_vii) costs spreadsheet. The total costs for the project proposal are summarized at the top of the costs spreadsheet (cell G2).

Please note:

	There is no warranty for the calculated costs (see disclaimer).

	All workbook-internal cell links must be verified manually, in particular, the cost(UNITS) tab.

Mapping of construction elements[bookmark: pmmaps]

Open ProjectName/ProjectMaps.aprx and go to the Catalog tab (typically on the right). Click on > Layouts and double-click on ProjectName_assessment_vii. In the layout’s Contents tab (typically on the left), select Layers Map Frame and double-click on every layer to define the correct dataset source files (Source tab) that result from the above-described cost assessment. Note: Layer groups do not have a Source tab. Relevant shapefiles are stored in ProjectName/Geodata/Shapefiles/ and relevant rasters are stored in ProjectName/Geodata/Rasters/. Export the map (ArcGIS Pros Catalog -> right-click on Layouts/ProjectName_assessment_vii -> select Export to File...) to the project folder and name it ProjectName_assessment_[...].pdf (proposition for consistent file naming).

Ecological benefit asessment (Calculate SHArea)[bookmark: pmSHArea]

The project costs are vetted against the net gain in annually usable habitat area for target fish species. The GUI’s Calculate Net Seasonal Habitat Area routine calculates usable habitat from rasters that indicate where the composite Habitat Suitability Index (cHSI) is higher than a selected threshold value.

Additional input and requirements[bookmark: pmadd]

Every cHSI raster refers to a steady discharge within a flow duration curve. The expected flow exceedance duration per discharge bin multiplied with the usable habitat area is summed up to the SHArea. The comparison of the existing (pre-project) and the “with implementation” (post-project) habitat suitability requires the following:

	Both situations (pre- and post-project) were simulated in the 2D hydrodynamic model.

	Flow duration curves for the project site were established:

	A workbook template for flow duration curves is available in RiverArchitect/SHArC/FlowDurationCurves/flow_duration_templates.xlsx

	The GetStarted tab contains the Analyze Flow tool for producing the required format for SHArea calculation in 00_Flows/CONDITION/.

	The River Architect’s SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module was executed for both situations (pre- and post-project) to obtain cHSI rasters.

	Example:

	The pre-project terrain DEM dates from 2008 and terrain modifications were performed based on the 2008 DEM in a reach called rea.

	Both DEMs, original and modified correspond to pre- and post-project conditions, respectively.

	Both DEMs were simulated in the 2D hydrodynamic model with discharges of 100, 200, 500, 1000, 2000, and 5000 cfs (or m3/s).

	The corresponding modelling results (flow depth and velocity) were stored in the directories RiverArchitect/01_Conditions/CONDITION/ and RiverArchitect/01_Conditions/CONDITION_rea_lyr10/, respectively. The string lyr10 refers to terraforming according to the code naming conventions.

	The River Architect’s SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module applied to both situations with a cHSI threshold value of, for example, θ = 0.5. This threshold value means that all pixels with a cHSI value lower than 0.5 were considered as being non-habitat and the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module excludes these pixels from the cHSI rasters. Thus, the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module produced cHSI rasters that are stored in:

	RiverArchitect/SHArC/SHArea/Rasters/CONDITION/ (existing / pre-project)

	RiverArchitect/SHArC/SHArea/Rasters/CONDITION_rea_lyr10/ (with implementation / post-project)

	The SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module associated (relative) discharge duration and usable habitat areas with the rasters. For example, if the target fish species was Chinook salmon, juvenile lifestage (naming convention chju), the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module wrote the usable habitat area and discharge duration to the following workbook: RiverArchitect/SHArC/SHArea/CONDITION_chju.xlsx

Run SHArea calculation[bookmark: pmrunSHArea]

When the above requirements are fulfilled, the Project Proposal GUI can assess the difference in usable habitat area between both situations (pre- and post-project, i.e., the net gain in SHArea). For starting the calculation, define the above-described input data and confirm the calculation:

	Select a fish species corresponding to the one analyzed with the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module (e.g., Chinook salmon, juvenile). The Select fish button turns green after selecting a target fish species + lifestage.

	Select an initial condition (pre-project) and confirm the selection (button turns green after selection).

	Select a condition after terraforming (with implementation / post-project) and confirm the selection (button turns green after selection.

	Click on the Calculate Net gain in SHArea button to start the assessment.

The program will run in the background and prompts the calculation progress in the console window.

After running the program, discharge-specific usable habitat area was written to a spreadsheet located in ProjectName/Geodata/SHArea_evaluation_UNIT.xlsx (see output section below).

Output[bookmark: pmiout]

After a successful run, a copy of the cost master workbook with the file name extension corresponding to the target fish automatically opens. For example, if the target fish was Chinook salmon - juvenile, the copy of the workbook is …/ProjectName_assessment_vii_chju.xlsx.

Moreover, the particular usable areas associated with the available discharges were written to /Geodata/SHArea_evaluation_chju.xlsx.

The discharge-related shapefiles with polygons of usable habitat area were saved as: ProjectName/Geodata/Rasters/CONDITION/no_cover/NUM_SHArea_eval.shp. NUM is an automated prefix added by the SHArea evaluation routine. The association of the NUM shapefile with the corresponding discharge was logged to ProjectName/Geodata/logfile_40.log.

The cells G3 and I2/3 in ProjectName_assessment_vii_FILI.xlsx state the net gain in SHArea and the project return in units of US$ per acre (or m2 per EUR or any other currency defined) net gain in SHArea (comparison of pre-and post-project condition), respectively.

 River Architect Tools

River Architect Tools

Tool scripts can be considered as beta versions of future functionalities that will be implemented in River Architect. Typically, Tools are basic commandline scripts for creative design support. Currently, routines for the hydraulic design of pool-riffle sequences or flood analysis are available, where the flood analysis applies to the U.S. Army Corps of Engineers’ HEC-SPP [https://www.hec.usace.army.mil/software/hec-ssp/] software. The Tools routines are located in RiverArchitect/Tools/.

Main Tool scripts

Run the following scripts with Esri’s Python environment (read more)

	make_annualpeak.py prepares required input data for statistic flow analyses and with the U.S. Army Corps of Engineers’ HEC-SPP [https://www.hec.usace.army.mil/software/hec-ssp/] software.

	make_flowduration.py creates flow duration curves (annual averages) for the assessment of AUA.

	morphologydesigner.py creates design tables for self-sustaining pool-riffle channels (uses cHydraulic.py and cPoolRiffle.py).

	rename_files.py facilitates renaming input files for conditions according to raster file name conventions by adding, removing or replacing a file name prefix and suffix.[bookmark: renamefiles]

	run_make_….bat are a batchfiles that run make_….py on Windows x64.

	run_morphology_designer.bat is a batchfiles that runs morphology_designer.py on Windows x64.

Class and Function files

The code execution depends on the following folders and scripts:

	.templates folder contains a template workbooks for multiple purposes.

	Products folder contains results of any script in this folder.

	cHydraulic.py contains a class with routines for calculating cross-section-averaged flow characteristics.

	cInputOutput.py contains classes required for reading and writing data, as well as calculation progress logging.

	cPoolRiffle.py provides routines for designing self-sustaining pool-riffle channels.

	fTools.py is a set of functions used by other Python applications within this folder.

 Error messages and Troubleshooting

Error messages and Troubleshooting

Known issues[bookmark: issues]

We do our very best to program River Architect as robust and flexible as possible. River Architect’s stepwise development nevertheless led to a few restrictions in its freedom of use, which are caused by a couple of hard-code sequences. The following limitations because of hard-coding are known and will be fixed in future versions:

	SHArC: Physical Habitats / fish lifestages must be named either spawning, fry, ammocoetes, juvenile, adult, hydrologic year, season, depth > x, or velocity > x. The lifestage names are currently hard-coded in the Fish class (RiverArchitect/.site_packages/riverpy/cFish.py) dictionary self.ls_col_add = {"spawning": 1, "fry": 3, "ammocoetes": 3, "juvenile": 5, "adult": 7, "hydrologic year": 1, "season": 3, "depth > x": 5, "velocity > x": 7}. This dictionary can be changed for using other lifestage names and we are working on an improvement in later versions. Note: This dictionary defines the relative column numbers that is added to the column where a fish name is defined.

	ArcGIS Pro 2.4 Exception Error: (arcpy) - expected 1 arguments, got 2

The latest version of ArcGIS Pro 2.4 may cause problems when RiverArchitect calls the conda environment.
 Remedy (1): Use "C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\python.exe" instead of "%PROGRAMFILES%\ArcGIS\Pro\bin\Python\Scripts\propy" in the RiverArchitect/Start_River_Architect.bat (see context in the installation instructions).
 Remedy (2): In ArcGIS Pro, go to Settings (bottom left), then Python, click on Manage Environments and Clone Default. Check the clone (arcgispro-py3-clone) and close ArcGIS Pro.

	Maximum data size (River Architect’s Lifespan & Design mapping hangs without prompting any message): River Architect’s data processing competence depends on the available Random-Access Memory (RAM). As a general rule, the maximum amount of data should be smaller than the available RAM. The size of processed data can be approximated as:
RAM >= Single Raster size · Number of features · Number of parameters per feature · Number of discharges
The data size limit applies to lifespan mapping only, where River Architect loads nearby all available data in the 01_Conditions/CONDITION/ folder for each selected feature to run arcpy.sa.CellStatistics [https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/cell-statistics.htm]. To avoid issues, consider the following rules of thumb:

	Limit the project area to reasonable extents (single Raster size <= 350 MB).

	Limit the number of discharges to less than 10 (set relevant discharges defined in rows 4, 11, and 12 of input files to less than 10); manual modification of automatically generated input files may be required (rows 4, 11, and 12 of 01_Conditions/CONDITION/input_definitions.inp).

	Analyze only one feature at a time rather than feature groups (such as “Plantings”). In this case, the single Raster size may be up to 1 GB.

	Grain size raster name coherence: The LifespanDesign module will read grain size raster names from 01_Conditions/CONDITION/input_definitions.inp. However, the Ecohydraulics module absolutely requires that a grain size raster in SI units is named dmean.tif (units: meters) and a grain size raster in U.S. customary units must be named dmean_ft.tif (units: feet).

	PDF maps export of lifespan maps fails under some circumstances (read more in the error message).

How to trace Error and Warning messages[bookmark: howto]

If River Architect encounters problems, the code writes WARNING and ERROR messages to the Python command line and to the same logfile where all other computation progress information is logged. The WARNING and ERROR messages provide information on the error cause and this Wiki contains all possible WARNING and ERROR messages of River Architect.

Thus, for troubleshooting, press the CTRL + F key, enter (part of) the WARNING or ERROR message that occurred, and press enter. Causes and Remedies are provided for every WARNING and ERROR message. Do not include specific parameters, file names, or expressions in parentheses or brackets.

Otherwise, the WARNING and ERROR messages are listed in alphabetic order (starting with Error messages, then ExceptionalError message, then Warning messages …).

Error and Warning message generation

Most errors occur when the wrong python interpreter is used or when Rasters or layouts have bad formats or when the information stated in the input files is erroneous.
The River Architect writes process errors and descriptions to logfiles. When the GUI encounters problems, it directly provides causes and remedies in pop-up infoboxes. The common error and warning messages, which can be particularly raised by the package (alphabetical order) are listed in the following with detailed descriptions of causes and remedies. Most error messages are written to the logfiles, but some exception errors are only printed to the terminal because they occur before logging could even be started. Such non-logged ExceptionErrors are listed at the bottom of the Error messages.
Some non-identifiable errors raised by the arcpy package disappear after rebooting the system.

Error messages

	arcpy ERROR 130051: Input feature class is not registered as versioned.

	Cause: arcpy failed to register datasets, which basically means that the dataset does not exist. Moreover, this arbitrary error may occur if, for example, multiple subsets of a Condition were created without closing River Architect between each creation.

	Remedy:

	Make sure that the dataset exists (read error message information).

	GetStarted: When creating Conditions, ensure to restart River Architect after every single creation of a Condition or Condition subset. This issue is related to arcpy, which will not register datasets [https://pro.arcgis.com/en/pro-app/help/data/geodatabases/overview/a-quick-tour-of-registering-and-unregistering-data-as-versioned.htm] unless River Architect is completely closed. We are developing work-arounds.

	ProjectMaker: Ensure that the project polygon and the selected habitat condition (from SHArC) overlap (otherwise, the intersecting dataset is empty).

	ERROR 000641: Too few records for analysis.

	Cause: This arcpy error message occurs here when arcpy.CalculateGeometryAttributes_management tries to compute the area of an empty shapefile.

	Remedy: If this error occurs within the calculation of SHArea (Seasonal Habitat Area) calculations, it may be ignored because some discharges do not provide any usable habitat area for a target fish species within a defined project area. Otherwise, traceback files and check the shapefile consistency.

	ERROR 999998: Unexpected Error. This is an operating system error and it can indicate different error conditions (i.e., the real reasons may have various error sources). Some of the most probable causes are:

	Cause: Usage of the wrong python interpreter

	Remedy:

	Make sure to use the correct Python environment (see installation guide)

	Make sure that all input Rasters are in GeoTIFF format and well placed in the folder RiverArchitect/01_Conditions/CONDITION/.

	Rebooting the system can help in some cases.

	ERROR: .cache folder in use.

	Cause: The content in the cache folder is blocked by another software and the output is probably affected.

	Remedy: Close the software that blocks .cache, including explorer.exe, other instances of python or ArcGIS and rerun the code. Also re-logging may be required if the folder cannot be unlocked.

	ERROR: .cache folder will be removed by package controls.

	Cause: arcpy could not clean up the .cache folder and the task is passed to Python’sos package. The content in the cache folder is blocked by another process and the output is probably affected.

	Remedy: Close the software that blocks .cache, including explorer.exe, other instances of Python or ArcGIS and rerun the code. Also re-logging may be required if the folder cannot be unlocked.

	ERROR: (arcpy) in *PAR*.

	Cause: Similar toExceptionERROR: (arcpy) The error is raised by the analysis_..., design_... and other functions when arcpy Raster calculations could not be performed. Missing Rasters, bad Raster assignments, errors in input geodata files, or bad Raster calculation expressions are possible reasons. The error can also occur when the SpatialAnalyst license is not available.

	Remedy: See ExceptionERROR: (arcpy) ...

	ERROR: Analysis stopped ([...] failed).

	Cause: Raised by analysis(...) function in LifespanDesign/feature_analysis.py when it encountered an error.

	Remedy: Trace back the error message in brackets. If a results Raster could not be saved, it means that the analyzed feature has no application, i.e., the results Raster is empty, and therefore, it cannot be saved.

	ERROR: Area calculation failed.

	Cause: Raised by calculate_sha(self) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s CHSI() class in SHArC/cHSI.py when it could not calculate the usable habitat area (see SHArea Methods).

	Remedy:

	Ensure that the SHArea threshold has a meaningful value between 0.0 and 1.0 (SHArC Intro).

	Ensure that neither the directory SHArC/.cache/ nor the directory SHArC/SHArea/ or their contents are in use by other program.

	Review the input settings according to the SHArC Quick GUIde.

	Follow up earlier error messages.

	ERROR: Bad assignment of x/y values in the coordinate input file.

	Cause: Raised by the coordinates_read(self) function of the Info() class in either LifespanDesign/cRead InpLifespan.py or MaxLifespan/cReadActionInput.py when mapping.inp has bad assignments of x-y coordinates.

	Remedy: Ensure that the coordinate definitions in mapping.inp (LifespanDesign/.templates/ or MaxLifespan/.templates/) correspond to the definitions in LifespanDesign Output maps.

	ERROR: Bad call of map centre coordinates. Creating squared-x layouts.

	Cause: Raised by get_map_extent(self, direction) function of the Info() class in either LifespanDesign/cReadInpLifespan.py or MaxLifespan/cReadActionInput.py when mapping.inp has bad assignments of x-y coordinates.

	Remedy:

	LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign]: Ensure that the file mapping.inp exists in the directory LifespanDesign/.templates/ corresponding to the definitions in LifespanDesign Output maps.

	MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan]: Ensure that the file mapping.inp exists in the directory MaxLifespan/.templates/ corresponding to the definitions in LifespanDesign Output maps.

	General: Replace mapping.inp with the original file and re-apply modifications strictly following LifespanDesign Output maps.

	ERROR: Bad mapping input file.

	Cause: Raised by eitherget_map_extent(self, direction),coordinates_read(self) orget_map_scale(self) function of the Info() class in either LifespanDesign/cReadInpLifespan.py or MaxLifespan/cReadActionInput.py when mapping.inp has wrong formats or it is missing.

	Remedy: See ERROR: Bad call of map centre coordinates [...].

	ERROR: MU calculation failed.

	Cause: Error raised by the MU class (GetStarted/cMorphUnits.py) when the defined flow depth and/or velocity Rasters are not usable.

	Remedy:

	Ensure that no other program uses the selected in flow depth and velocity Rasters, and Condition folder.

	Manually / visually verify the consistency of the provided input Rasters (Float - type).

	See also next error message (Baseflow MU update failed.)

	ERROR: MU update failed.

	Cause: Error raised by the MU class (GetStarted/cMorphUnits.py) when processing the provided flow depth and/or velocity Rasters lead to non-meaningful results.

	Remedy:

	Ensure that the flow depth and velocity Rasters have consistent units.

	ISSUE: The current code uses U.S. customary units for MU delineation according to Wyrick and Pasternack (2014) [https://www.sciencedirect.com/science/article/pii/S0169555X14000099]. If required, manual changes of the delineation functions can be made in GetStarted/cMorphUnits.py (calculate_mu_baseflow function approximately from line 75 onward). We are working on improving the Morphological Unit generator.

	ERROR: Boundary shapefile in arcpy.PolygonToRaster[...].

	Cause: Raised the SHArC module’s make_boundary_ras(self, shapefile) function (cHSI.py) when it could not convert a provided shapefile defining calculation boundaries to a Raster and load it as arcpy.Raster(.../SHArC/HSI/CONDITION/bound_ras).

	Remedy: Verify that a the selected boundary shapefile (SHArC computation boundaries) has a valid rectangle and an Id field value of 1 for that rectangle.

	ERROR: Boundary shapefile provided but [...].

	Cause: Raised the SHArC module’smake_chsi(self, fish, boundary_shp) function (cHSI.py) when the “To Raster” conversion of the provided shapefile defining calculation boundaries failed.

	Remedy: See ERROR: Boundary shapefile in arcpy.PolygonToRaster[...].

	ERROR: Calculation of cell statistics failed.

	Cause: Raised by identify_best_features(self) of MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan]’s ArcpyContainer() class in MaxLifespan/cActionAssessment.py when arcpy.sa.CellStatistics() could not be executed.

	Remedy:

	The latest feature added to the internal best lifespan Raster may contain inconsistent data. Manually load the last feature Raster (the logfile tells the feature name) into ArcGIS Pro and trace back the error. If needed, re-run lifespan/design Raster Maker.

	In the case that the error occurs already with the first feature added, the MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan]’s zero Raster may be corrupted. The remedy described for the error message ExceptionERROR: Unable to create ZERO Raster. Manual intervention required* can be used to manually re-create the zero` Raster.

	ERROR: Calculation of volume from RASTER failed.

	Cause: The volume_computation(self) function of the VolumeAssessment() class in VolumeAssessment/cVolumeAssessment.py raises this error when the command arcpy.SurfaceVolume_3d(RASTER, "", "ABOVE", 0.0, 1.0) failed.

	Remedy:

	Ensure that an ArcGIS 3D extension license is available.

	Ensure that the modified DEM Rasters contain valid data and are not used in any other application.

	ERROR: Cannot find FEAT max. lifespan Raster.

	Cause: The automated terrain modification with grading and/or widen features uses max. lifespan Rasters (maps) to identify relevant areas. If The get_action_Raster(self, feature_name) function of the ModifyTerrain() class in ModifyTerrain/cModifyTerrain.py cannot find max. lifespan Rasters in the defined max. lifespan Raster directory (default: MaxLifespan/Output/Rasters/CONDITION/), it raises this error message.

	Remedy: Ensure that grading and/or widen max. lifespan Rasters exist in the defined input folder (default MaxLifespan/Output/Rasters/CONDITION/) and that the names of the Rasters contain the feature shortname (i.e., grade and/or widen).

	ERROR: Cannot find flow depth Raster.

	Cause: Raised by make_chsi(self, fish, boundary_shp) of the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s CHSI() class in SHArC/cHSI.py when it could associate a flow depth Raster based on the name of a habitat suitability index (HSI) Raster name.

	Remedy:

	Ensure that the flow depth Raster names in RiverArchitect/01_Conditions/CONDITION/ strictly comply with the naming conventions described in the Conditions / Input Rasters section.

	Ensure that the HSI Rasters are stored in .../SHArC/HSI/CONDITION/, with the correct Raster names including information about the discharge (see the SHArC output section).

	ERROR: Cannot load modified DEM.

	Cause: The volume difference calculation and mapping of a (CAD-) modified DEM Rasters failed because the __init__(self, ...) function of the VolumeAssessment() class in VolumeAssessment/cVolumeAssessment.py cannot access the Raster.

	Remedy: Ensure that the selected (CAD-) modified DEM Raster exists and that it is not opened in any other program (close ArcGIS Pro / QGIS).

	ERROR: Cannot load original DEM.

	Cause: The volume difference calculation and mapping of the selected DEM Rasters failed because the __init__(self, ...) function of the VolumeAssessment() class in VolumeAssessment/cVolumeAssessment.py cannot access the Raster.

	Remedy: Ensure that the selected DEM Raster exists and that it is not opened in any other program (close ArcGIS Pro / QGIS).

	ERROR: Cannot open project: DIR/module_name.aprx.

	Cause: Mapping of module_name raises this error message when the stated project file (.aprx) cannot be opened.

	Remedy: Ensure that the stated is not opened in any other program (ArcGIS Pro Desktop) and that the stated project file exists.

	ERROR: Could not access Fish.xlsx (...).

	Cause: The get_hsi_curve(self, species, lifestage, par) function of the Fish() class (.site_packages/riverpy/cFish.py) or the main() function in s40_compare_wua.py raise this error message when it cannot access Fish.xlsx or copy read values from the /SHArC/SHArea/condition` directory.

	Remedy: Ensure that neither .site_packages/templates/Fish.xlsx nor any file in /SHArC/SHArea/condition*` is used by another program.

	ERROR: Could not add cover HSI.

	Cause: The make_chsi(self, fish) function of the CHSI() class (HabitatEvluation/cHSI.py) raises this error message when it failed to add cover HSI Rasters.

	Remedy: Manually verify cover HSI Rasters in SHArC/HSI/ and recompile cover HSI Rasters if needed (see CoverHSI).

	ERROR: Could not append PDF page XX to map assembly.

	Cause: The make_pdf_maps(self, ...) function of the Mapper() class (.site_packages/riverpy/cMapper.py) raises this error when it failed to map the current page (extent).

	Remedy:

	LifespanDesign / Max Lifespan: Ensure that the definitions in LifespanDesign/.templates/mapping.inp are correct.

	VolumeAssessment: Verify the definitions in the reach coordinates workbook and also refer to error message ERROR: Could not create new project.

	General: Ensure that no other program accesses the LifespanDesign/.cache/, MaxLifespan/.cache/, MaxLifespan/Output/, VolumeAssessment/Output/, or 02_Maps/* directories or their contents (close ArcGIS Pro).

	ERROR: Could not calculate CellStatistics (Raster comparison).

	Cause: Raised by compare_raster_set(self, ...) function of the arcpyAnalysis() class in LifespanDesign/cLifespanDesignAnalysis.py when the provided it failed to combine the lifespan according to the provided input Rasters (hydraulic or scour fill or morphological units).

	Remedy: Manually open the input Rasters and ensure that they comply with the requirements stated in the Conditions / Input Rasters section.

	ERROR: Could not calculate stable grain size Raster for

	Cause: Error raised by the ProjectMaker/s30_terrain_stabilization/’s main() function when it cannot calculate the stable grain size for a user-defined minimum (critical) lifespan and Condition.

	Remedy: Open RiverArchitect/logfile.log and verify that the stated source data exist and are not empty (if necessary, open geofiles in ArcGIS Pro and verify contents).

	ERROR: Could not create new project (...)

	Cause: A module cannot find a project for mapping when it tries to open aprx_origin = arcpy.mp.ArcGISProject(self.ref_lyt_dir + "module_name.aprx") or when it tries to save a copy of the source project (aprx_origin.saveACopy(self.output_mxd_dir + "module_name.aprx")).

	Remedy: Ensure that the source project aprx_origin exists (quoted in ERROR-message brackets) and that the target directory (to:) can be accessed (writing rights / close ArcGIS Pro). If the source project is missing, re-download it from the source code [https://github.com/riverarchitect/program/archive/master.zip].

	ERROR: Could not create Raster of the project area.

	Cause: Raised by set_project_area(self) of ProjectMakers’s SHArC() class in ProjectMaker/cSHArC.py or the main() function in ProjectMaker/s20_plantings_delineation.py) when it failed to convert the project area shapefile to a Raster, which it needs for limiting spatial calculations to the project extent.

	Remedy:

	Ensure that the project was correctly delineated (Project Area Polygon preparation).

	If the Error message occurred within the terrain stabilization process, either restart the Project creation while properly implementing the Project Area Polygon preparation OR manually create a project area Raster (save as ProjectMaker/ProjectName_vXX/Geodata/Rasters/ProjectArea.tif, where in-values=Int(1) and out-values=NoData).

	ERROR: Could not create sub-condition folder:

	Cause: Raised by make_sub_condition(...) (GetStarted/fSubCondition) when the defined sub-Condition name is invalid.

	Remedy: Ensure that the target sub-Condition folder is not in use by any other program and that there are no invalid characters for folder names (such as $ or ?!).

	ERROR: Could not crop RASTER.

	Cause: The make_sub_condition(...) (GetStarted/fSubCondition.py) function raises this error message when it failed cropping the Raster with the spatial analyst operation Con(~IsNull(boundary_ras), Float(source_Raster)).

	Remedy: Verify the consistency of the Rasters in the source condition and make sure that no other program is using data from the source condition or the new sub-Condition folder.

	ERROR: Could not crop Raster to defined flow depth.

	Cause: The crop_input_Raster(self, fish_species, fish_lifestage, depth_Raster_path) function of the CovHSI(HHSI) class (HabitatEvluation/cHSI.py) raises this error message when it failed cropping the Raster with the spatial analyst operation Con((Float(h_Raster) >= h_min), cover_type_Raster).

	Remedy: Ensure that the provided flow depth file (selected in the GUI) contains valid data and that Fish.xlsx contains a minimum flow depth value for the selected fish species and lifestage.

	ERROR: Could not export PDF page no. XX

	Cause: The make_pdf_maps(self, ...) function of the Mapper() class (.site_packages/riverpy/cMapper.py) raises this error when LifespanDesign/.templates/mapping.inp or MaxLifespan/.templates/mapping.inp contain invalid xy-coordinates (format).

	Remedy: Ensure the definitions in LifespanDesign/.templates/mapping.inp and MaxLifespan/.templates/mapping.inp are correct.

	ERROR: Could not find / access input Rasters.

	Cause: Error raised by the D2W class (GetStarted/cDepth2Groundwater.py) or the DET class (GetStarted/cDetrendedDEM.py) or the MU class (GetStarted/cMorphUnits.py) when the defined DEM, flow depth, or velocity GeoTIFFs are not usable.

	Remedy:

	Ensure that no other program uses the selected in DEM/flow depth Raster and Condition folder.

	Manually / visually verify the consistency of the provided input Rasters.

	Avoid running d2w.tif, mu.tif and det.tif creation simultaneously and for multiple conditions (the .cache folders are locked by individual instantiations).

	ERROR: Could not find max. lifespan Rasters.

	Cause: Error raised by the main() function in ProjectMaker/s20_plantings_delineation.py) when the defined directory of max. lifespan Rasters contains invalid or corrupted Raster data.

	Remedy:

	Ensure the correct usage of variables and input definitions (ProjectMaker Quick GUIde).

	Ensure that max. lifespan Rasters were generated without errors; if necessary, visually control the consistency of max. lifespan Rasters in .../MaxLifespan/Output/Rasters/CONDITION_reach_lyr20_plants/ and .../MaxLifespan/Products/Rasters/CONDITION_reach_lyr20_plants/ or …nature-based engineering (cf. Project Maker vegetation plantings and supporting nature-based engineering features).

	ERROR: Could not find any worksheet.

	Cause: Error raised by the open_wb(self) function of the Read() class in RiverArchitect/.site_packages/riverpy/cInputOutput.py or the MakeFlowTable class (RiverArchitect/.site_packages/riverpy/cMakeTable.py) when the concerned workbook contains errors.

	Remedy:

	Ensure the correct usage of .site_packages/templates/Fish.xlsx (SHArC Fish section).

	Ensure the correct adaptation of ProjectMaker/.../Project_assessment_vii.xlsx (ProjectMaker’s Cost quantity workbook).

	Open SHArC/SHArea/CONDITION_sharea_FILI.xlsx, verify the data contents and make sure that the file is not opened in any other program.

	ERROR: Could not find hydraulic Rasters for CONDITION.

	Cause: Error raised by the ProjectMaker/s30_terrain_stabilization/’s main() function when it cannot find hydraulic Rasters for the selected lifespan-design condition.

	Remedy: Ensure that the hydraulic Rasters used for generating Lifespan and Design Rasters are available in RiverArchitect/01_Conditions/CONDITION/ (also: close all other programs that potentially use these Rasters).

	ERROR: Could not find Lifespan Raster (...).

	Cause: Error raised by the ProjectMaker/s30_terrain_stabilization/’s main() function when it cannot find lifespan Rasters.

	Remedy: Go to the LifespanDesign tab for the selected Condition. Create lifespan maps for the Grains / Boulders feature (creates lf_grains.tif). Terrain stabilization absolutely requires Grains / Boulders (lf_grains.tif), and optionally requires Streamwood (lf_wood.tif) and Nature-based engineering features (other) (lf_bio.tif).

	ERROR: Could not find sheet "extents" in computation_extents.xlsx.

	Cause: Error raised by the get_reach_coordinates(self, internal_reach_id) function of the Read() class in RiverArchitect/.site_packages/riverpy/cReachManager.py) when the extents sheet in the reach coordinate workbook (ModifyTerrain/.templates/computation_extents.xlsx) could not be read.

	Remedy: Ensure the correct setup of ModifyTerrain/.templates/computation_extents.xlsx (reach preparation within the ModifyTerrain module).

	ERROR: Could not find the cover input geofile [...]

	Cause: Error raised by the __init__(self, ...) function of the CovHSI(HHSI) class in SHArC/cHSI.py) when the input cover geofile could not be read or is missing.

	Remedy: Ensure that a geofile (Raster or shapefile) exists in the specified CONDITION folder for the specified cover type (checkbox activated in the GUI). The Help button in the GUI provides more information on required geofiles and the SHArC Working Principles.

	ERROR: Could not interpolate exceedance probability of Q = [...]

	Cause: Raised by interpolate_flow_exceedance(self, Q_value) of the FlowAssessment() class in .site_packages/riverpy/cFlows.py when the flow duration curve contains invalid data.

	Remedy: Ensure the correct setup of the used flow duration curve in 00_Flows/CONDITION/flow_durationxlsx. The file structure must correspond to that of the provided template flow_duration_template.xlsx and all discharge values need to be positive floats. Review the HHSI input preparation for details.

	ERROR: Could not load

	Cause: Raised by several functions, when they cannot find a user-defined or built-in template file.

	Remedy: Ensure that the stated file exists, can be opened (is not corrupted) and no other program uses the stated file.

	ERROR: Could not load boundary Raster:

	Cause: Raised by make_sub_condition(...) (GetStarted/fSubCondition) when the defined boundary Raster contains invalid data.

	Remedy: Ensure that the spatial boundary was correctly delineated (similar as described in Project Area Polygon preparation) and converted to an Integer Raster: On-values have to be Integer 1 and Off-values have to be Integer 0. The sub-Condition creation only considers Pixels with On-values (Integer 1).

	ERROR: Could not load existing Raster of the project area.

	Cause: Raised by set_project_area(self) of ProjectMakers’s SHArC() class in ProjectMaker/cSHArC.py when it found a Raster that delineates the project area, but this Raster is corrupted. The function requires the shapefile to Raster conversion to limit applicable Rasters to the project extent range, which is done with Raster calculator operations.

	Remedy:

	Ensure that the project was correctly delineated (Project Area Polygon preparation).

	Manually inspect the project delineation Raster.

	ERROR: Could not load newly created Raster of the project area.

	Cause: Raised by set_project_area(self) of the ProjectMaker’s SHArC() class in ProjectMaker/cSHArC.py when the converted the project area shapefile is corrupted.

	Remedy: Ensure that the project was correctly delineated (Project Area Polygon preparation).

	ERROR: Could not open workbook (...).

	Cause: Error raised by the __init__(self) function of the Read() class in riverpy/cInputOutput.py or the write_flow_duration2xlsx(self, ...) function of the SeasonalFlowProcessor() class (riverpy/cFlows.py) when the concerned workbook contains errors or cannot be opened for other reasons.

	Remedy:

	ProjectMaker: Ensure the correct usage of the concerned workbook (ProjectMaker Wiki [https://github.com/RiverArchitect/RA_wiki/ProjectMaker]).

	Flow generator: Ensure that the template workbook in the parentheses is not opened in any other program and that the template workbook was not modified.

	ERROR: Could not perform spatial radius operations [...].

	Cause: The spatial_join_analysis(self, rater, curve_data) function of the CovHSI(HHSI) class (SHArC/cHSI.py) raises this error message when one or several spatial calculations failed, including arcpy.RasterToPoint_conversion[...], arcpy.SpatialJoin_analysis[...] and / or arcpy.PointToRaster_conversion[...].

	Remedy: Ensure that the cover input files and habitat suitability (curve) parameters are properly defined according to CoverHSI.

	ERROR: Could not process flow series.

	Cause: Error raised by the build_flow_duration_data(self.) (SeasonalFlowProcessor() in RiverArchitect/.site_packages/riverpy/cFlows.py) when it could not read the provided flow series data file.

	Remedy: Ensure that the format of the provided flow series workbook corresponds to the provided example data file (00_Flows/InputFlowSeries/flow_series_example_data.xlsx).

	ERROR: Could not process information from [...].

	Cause: The main() function in ProjectMaker/s40_compare_wua.py raises this error message when it could not calculate the annually usable habitat area for a condition or (set of) discharge(s).

	Remedy: Ensure that the variable (parameters) are properly defined according to ProjectMaker Quick GUIde and that the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module contains the required information.

	ERROR: Could not read flow duration curve data.

	Cause: Raised by get_flow_data(self, ...) of the FlowAssessment() class in .site_packages/riverpy/cFlows.py when the flow duration curve contains invalid data.

	Remedy:

	Used within SHArC: Ensure that a flow duration curve for all selected Physical Habitats and the select hydraulic Condition was generated. The flow duration curves are typically saved as 00_Flows/CONDITION/flow_duration_FILI.xlsx, where FILI is a placeholder of the first two letters of the selected species and lifestage (Physical Habitat), respectively. For example for Chinook Salmon - Juvenile, FILI becomes chju, or for All Aquatic - hydrologic year, FILI becomes alhy.

	Ensure that the provided discharge series contains valid data formats as indicated in the example workbook (00_Flows/InputFlowSeries/flow_series_example_data.xlsx).

	ERROR: Could not read parameter type [...] from Fish.xlsx.

	Cause: The get_hsi_curve(self, species, lifestage, par) function of the Fish() class (.site_packages/riverpy/cFish.py) and the SeasonalFlowProcessor class (riverpy/cFlows.py) raise this error message when it cannot read a habitat suitability curve from Fish.xlsx.

	Remedy:

	Ensure that .site_packages/templates/Fish.xlsx is not opened in any other program.

	Ensure that a habitat suitability curve is defined in Fish.xlsx for the considered hydraulic or cover parameter according to SHArC Fish section.

	Ensure that the lifestages defined in .site_packages/templates/Fish.xlsx are part of the following dictionary: self.ls_col_add = {"spawning": 1, "fry": 3, "ammocoetes": 3, "juvenile": 5, "adult": 7, "hydrologic year": 1, "season": 3, "depth > x": 5, "velocity > x": 7, "rearing": 7}. All lifestages must be defined in self.ls_col_add, as relative column number to the 0-column of every Fish species. For example, for adding a "rearing" lifestage for Chinook salmon (one of the default species), "rearing" must replace "adult", which is in the relative 7th (8-1 for the 0-column) of the Chinook salmon species. If lifestages were otherwise modified, either consider using one of the lifestages defined in the dictionary or modify the dictionary (self.ls_col_add) in the Fish class (.site_packages/riverpy/cFish.py).

	ERROR: Could not read source file.

	Cause: The Read class (RiverArchitect/.site_packages/riverpy/cInputOutput.py) or make_sub_condition (GetStarted/fSubCondition) raise this error when the data from the provided workbook or Raster, respectively, cannot be processed.

	Remedy:

	riverpy: Ensure that the provided workbook respects the input requirements described in the instructions of the applied module.

	GetStarted/fSubCondition: Verify the consistency of the Rasters in the source condition and make sure that no other program is using data from the source condition.

	ERROR: Could not read source project (...)

	Cause: A module cannot find a project for mapping when it tries to open aprx_origin = arcpy.mp.ArcGISProject(self.ref_lyt_dir + "module_name.aprx").

	Remedy: Ensure that the source project aprx_origin exists (quoted in ERROR-message brackets) and not opened in any other application (e.g., close ArcGIS Pro). If the source (origin) project is missing, re-download it from the source code [https://github.com/riverarchitect/program/archive/master.zip].

	ERROR: Could not retrieve reach coordinates.

	Cause: The automated terrain modification with grading and/or widen features in the modification_manager(self, feat_id) function of the ModifyTerrain() class (ModifyTerrain/cModifyTerrain.py) or the make_volume_diff_rasters(self) function of the VolumeAssessment() class (VolumeAssessment/cVolumeAssessment.py) raise this error when the reach extents defined in ModifyTerrain/.templates/computation_extents.xlsx are not readable. In particular, the command self.reader.get_reach_coordinates(self.reaches.dict_id_int_id[self.current_reach_id]) caused the error.

	Remedy:

	Follow the instructions in reach preparation within the ModifyTerrain module for correct reach definitions.

	If the ModifyTerrain [https://github.com/RiverArchitect/RA_wiki/ModifyTerrain] module is externally loaded, ensure the correct definition of features and feature shortnames (see the alternative run options for the ModifyTerrain module).

	ERROR: Could not run SHArea analysis.

	Cause: The main() function in ProjectMaker/s40_compare_wua.py raises this error message when it could not calculate SHArea.

	Remedy: Traceback warning and other error messages. Ensure the correct definition of parameters, creation of required geodata, and file naming (ProjectMaker Wiki [https://github.com/RiverArchitect/RA_wiki/ProjectMaker]))

	ERROR: Could not save best lifespan Raster.

	Cause: Raised by identify_best_features(self) of MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan]’s ArcpyContainer() class in MaxLifespan/cActionAssessment.py when the calculated internal best lifespan Raster is corrupted.

	Remedy:

	Check prior WARNING and ERROR messages.

	Ensure that neither the directory MaxLifespan/.cache/ nor the directory MaxLifespan/Output/ or their contents are in use by other programs.

	ERROR: Could not save CSI Raster associated with ...

	Cause: Raised by make_chsi_hydraulic(self, fish) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s CHSI() class in SHArC/cHSI.py when the calculated cHSI Raster is empty or corrupted.

	Remedy:

	Ensure that neither the directory SHArC/.cache/ nor the directory SHArC/SHArea/ or their contents are used by another program.

	Review the input settings according to SHArC Quick GUIde.

	ERROR: Could not save cover / H HSI [...] Raster ...

	Cause: Raised by make_hhsi(self, fish_applied) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s HHSI() class in SHArC/cHSI.py when the calculated HHSI Raster is empty or corrupted.

	Remedy:

	Ensure that no other software uses data from neither the SHArC/ nor the RiverArchitect/01_Conditions/ directories.

	Review the input flow velocity and depth Rasters according to the Conditions / Input Rasters section.

	ERROR: Could not save RASTER .

	Cause: Raised by save_tif(self, ...) of [GetStarted][11]’s ConditionCreator() class in GetStarted/cConditionCreator.py or make_sub_condition (GetStarted/fSubCondition.py) when a Raster file could not be saved to a New or Sub Condition, respectively.

	Remedy:

	Ensure that no other program uses the new RiverArchitect/01_Conditions/ directory.

	Visually verify the consistency of provided input Rasters.

	ERROR: Could not save WORKBOOK.

	Cause: The main() function in ProjectMaker/s40_compare_wua.py or the write_flow_duration2xlsx(self, ...) function of the SeasonalFlowProcessor() class (riverpy/cFlows.py) raise this error message when they could not save the WORKBOOK.

	Remedy: Ensure that the target workbook can be overwritten, has valid contents, and is not opened by another program. Traceback earlier warning and error messages.

	ERROR: Could not save SHArea-CHSI Raster.

	Cause: Raised by calculate_sha(self) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s CHSI() class in SHArC/cHSI.py when the calculated cHSI Raster is empty or corrupted.

	Remedy:

	Ensure that the SHArea threshold has a meaningful value between 0.0 and 1.0 (SHArC Intro).

	Ensure that neither the directory SHArC/.cache/ nor the directory SHArC/SHArea/ or their contents are in use by other programs.

	Review the input settings according to SHArC Quick GUIde.

	ERROR: Could not set arcpy environment (permissions and licenses?).

	Cause: A script using arcpy and/or arcpy.sa could not set up the work environment.

	Remedy: Either the wrong Python interpreter was used or arcpy and/or a Spatial Analyst extension are not available. Read more on setting up the Python environment. [https://github.com/RiverArchitect/RA_wiki/Installation#started]

	ERROR: Could not transfer net SHArea gain.

	Cause: The main() function in ProjectMaker/s40_compare_wua.py raises this error message when it could not copy the calculated SHArea from SHArea_evaluation_unit.xlsx to REACH_stn_costs_vii.xlsx.

	Remedy: Open SHArea_evaluation_template_unit.xlsx and verify the calculated values. Traceback potential error sources in the CHSI Rasters /SHArC/ folder and other error messages.

	ERROR: Could not transfer SHArea data for [FISH].

	Cause: The main() function in ProjectMaker/s40_compare_wua.py raises this error message when it could not retrieve SHArea data from the /SHArC/SHArea/ module to SHArea_evaluation_UNIT.xlsx.

	Remedy: Open SHArea_evaluation_TEMPLATE_UNIT.xlsx and verify the calculated values. Traceback potential error sources in the CHSI Rasters /SHArC/ folder and other error messages.

	ERROR: Could not write flow data set.

	Cause: Error raised by the write_flow_duration2xlsx(self, ...) function of the SeasonalFlowProcessor() class (riverpy/cFlows.py) when it could not write flow duration data set to RiverArchitect/00_Flows/CONDITION/flow_duration_FILI.xlsx.

	Remedy: Close all applications that may use 00_Flows/CONDITION/flow_duration_FILI.xlsx and traceback earlier warning and error messages.

	ERROR: Could not write flow duration curve data (...).

	Cause: Error raised by the make_flow_duration(self, ...) or make_condition_flow_duration(self, ...) functions (SeasonalFlowProcessor() in RiverArchitect/.site_packages/riverpy/cFlows.py) when it could not write flow duration curve data to RiverArchitect/00_Flows/CONDITION/flow_duration_FILI.xlsx.

	Remedy: Close all applications that may use 00_Flows/CONDITION/flow_duration_FILI.xlsx.

	ERROR: Could not write value to CELL [...]

	Cause: Error raised by the save_close_wb(self, ...) (Write() in RiverArchitect/.site_packages/riverpy/cInputOutput.py) or write_data_cell(self, column, row, value) (MakeTable in .site_packages/riverpy/cMakeTable.py) when it cannot write a value to RiverArchitect/SHArC/SHArea/condition_FILI.xlsx`.

	Remedy: Close all applications that may use RiverArchitect/SHArC/SHArea/CONDITION_FILI.xlsx. Detailed information on SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] workbook outputs are available in the HHSI input preparation section.

	ERROR: Could not write SHArea data for [FISH].

	Cause: The main() function in ProjectMaker/s40_compare_wua.py raises this error message when it could not write the calculated SHArea to when it cannot write a value to SHArea_evaluation_template_unit.xlsx.

	Remedy: Ensure that the workbook is not opened by another program and/or visually verify that the concerned `CHSI* Rasters contain valid values.

	ERROR: Cover Raster calculation (check input data).

	Cause: Raised by call_analysis(self, curve_data) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’sCovHSI(HHSI) class in SHArC/cHSI.py when the cover HSI Raster calculation failed.

	Remedy: Ensure that the input geofiles (Raster or shapefile) are correctly set up according to CoverHSI.

	ERROR: Extent is not FLOAT. Substituting to extent = 7000.00.

	Cause: Raised by the save_design(self, name) orsave_lifespan(self, name) functions of the ArcPyAnalysis class in LifespanDesign/cLifespanDesignAnalysis.py when the output folder for Rasters (the folder directory is stated in the logfile) contains Rasters of the same name which cannot be deleted.

	Remedy: Ensure that no other program uses the Raster output folder and consider moving existing files in that folder to LifespanDesign/Products/Rasters/CONDITION.

	ERROR: Existing files are locked. Consider deleting [...] file structure.

	Cause: Raised by the get_map_extent(self, direction) function of the Info() class in either LifespanDesign/cReadInpLifespan.py or MaxLifespan/cReadActionInput.py when mapping.inp has bad assignments of x-y coordinates (not a number).

	Remedy: See `ERROR: Bad call of map centre coordinates … *

	ERROR: Failed checking *PAR* of *FEATURE*.

	Cause: Special case of ERROR: Function analysis, which may occur after code modifications.

	Remedy:

	Make sure that the self.parameter_lists of features (Code Extension / Extend Features within the LifespanDesign module) has valid entries that also occur in analysis_call(*args) (LifespanDesign/feature_analysis.py).

	Make sure that valid function names exist in LifespanDesign/cLifespanDesignAnalysis.py (Add analysis within the LifespanDesign module).

	ERROR: Failed to access [...].

	Cause: Error raised by the open_wb(self, ...) function of the Read() (or the inheriting Write())class in RiverArchitect/.site_packages/riverpy/cInputOutput.py or the MakeFlowTable class in RiverArchitect/.site_packages/riverpy/cMakeTable.py) when a workbook could not be opened.

	Remedy:

	Ensure that the listed workbook is not opened in any other program and that the workbook is correctly installed according to the module descriptions.

	Used within SHArC:

	Ensure that a flow duration curve for all selected Physical Habitats and the select hydraulic Condition was generated. The flow duration curves are typically saved as 00_Flows/CONDITION/flow_duration_FILI.xlsx, where FILI is a placeholder of the first two letters of the selected species and lifestage (Physical Habitat), respectively. For example for Chinook Salmon - Juvenile, FILI becomes chju, or for All Aquatic - hydrologic year, FILI becomes alhy.

	If the module is executed repeatedly for the same condition and fish species-lifestage, and the workbook (SHArC/SHArea/CONDITION_sharea_FILI.xlsx) has been manually deleted, restore it by clicking on the Make HSI Raster (...) dropdown menu > Select “Hydraulic” or “Cover” options to open the popup window > Select a Condition > Wait until the green button View discharge dependency workbook becomes active > RETURN to MAIN WINDOW and repeat habitat raster, raster combination and/or SHArea analysis.

	Open SHArC/SHArea/CONDITION_sharea_FILI.xlsx, verify the data contents and make sure that the file is not opened in any other program.

	ERROR: Failed to access computation_extents.xlsx.

	Cause: Error raised by the get_reach_coordinates(self, internal_reach_id) function of the Read() class in RiverArchitect/.site_packages/riverpy/cReachManager.py) when the reach coordinate spreadsheet (ModifyTerrain/.templates/computation_extents.xlsx) could not be read.

	Remedy: Ensure the correct setup of ModifyTerrain/.templates/computation_extents.xlsx (reach preparation within the ModifyTerrain module).

	ERROR: Failed to access / Failed to load [...]

	Cause: (1) Error raised by the open_wb(self) and make_condition_xlsx(self, fish_sn) functions of the MakeTable() class in .site_packages/riverpy/cMakeTable.py) when the template workbook contains errors.

(2) Error raised by the GetStarted module’s ConditionCreator (cConditionCreator.py).

	Remedy:

	Ensure the correct usage of .site_packages/templates/Fish.xlsx (SHArC Fish section) and the completeness of SHArC/.templates/Q_sharea_template_si.xlsx and SHArC/.templates/Q_sharea_template_us.xlsx. If either template workbook is corrupted or does not exist, re-install missing files.

	GetStarted: Ensure that the provided Raster exists.

	ERROR: Failed to access WORKBOOK.

	Cause: Error raised by the write_volumes(self, ...) function of the Writer() class in RiverArchitect/.site_packages/riverpy/cReachManager.py) or the __init__(..) function of the Read() class in RiverArchitect/.site_packages/riverpy/cInputOutput.py when The WORKBOOK is inaccessible or locked by another program.

	Remedy: Ensure that the concerned workbook exists and no other program uses the workbook.

	ERROR: Failed to add Raster.

	Cause: Raised by read_hyd_Rasters(self) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s HHSI() class in SHArC/cHSI.py when is could not find hydraulic input Rasters.

	Remedy:

	Ensure that no other software uses data from neither the SHArC/ nor the RiverArchitect/01_Conditions/ directories.

	Review the input flow velocity and depth Rasters according to the Conditions / Input Rasters section.

	ERROR: Failed to create WORKBOOK.

	Cause: Error raised by the write_volumes(self, ...) function of the Writer() class in .site_packages/riverpy/cReachManager.py) when the template it could not add new sheets in VolumeAssessment/Output/CONDITION_volumes.xlsx or write to copies of VolumeAssessment/templates/volume_template.xlsx.

	Remedy: Traceback earlier error messages, ensure that no other program locked VolumeAssessment/Output/CONDITION_volumes.xlsx and ensure that VolumeAssessment/templates/volume_template.xlsx was not deleted.

	ERROR: Failed to open Fish.xlsx. Ensure that the workbook is not open.

	Cause: Raised by the edit_xlsx(self) function of the Fish() class in .site_packages/riverpy/cFish.py when .site_packages/templates/Fish.xlsx is opened by another program or non-existent.

	Remedy: Ensure that the file .site_packages/templates/Fish.xlsx exists and close any software that may use the workbook.

	ERROR: Failed to load [...].

	Cause: Raised by the make_condition_xlsx(self, ...) function of the MakeTable() class in .site_packages/riverpy/cMakeTable.py when it could not copy a template workbook for creating fish-lifestage-specific flow tables (copy of empty.xlsx).

	Remedy: Ensure that all template files in SHArC/.templates/ exist as provided with the installation files (in particular: empty.xlsx, CONDITION_sharea_template_si.xlsx, CONDITION_sharea_template_us.xlsx, and flow_duration_template.xlsx).

	ERROR: Failed to read coordinates from computation_extents.xlsx (return 0).

	Cause: Error raised by the get_reach_coordinates(self, internal_rach_id) function of the Read() class in .site_packages/riverpy/cReachManager.py) when the reach coordinate spreadsheet (ModifyTerrain/.templates/computation_extents.xlsx) contains invalid data.

	Remedy: Ensure correct setup of ModifyTerrain/.templates/computation_extents.xlsx (reach preparation within the ModifyTerrain module).

	ERROR: Failed to read maximum depth to water value for [...].

	Cause: Error raised by the lower_dem_for_plants* function of the ModifyTerrainclass inModifyTerrain/cModifyTerrain.py) when the threshold workbook (LifespanDesign/.templates/thresh old_values.xlsx`) is not accessible or does not contain values for Depth to water table (min) / max contains invalid data.

	Remedy: Ensure the correct setup of LifespanDesign/.templates/threshold_values.xlsx (Modify Threshold Values within the LifespanDesign module). Note that ModifyTerrain starts reading depth to water table values column by column, until it meets a non-numeric value.

	ERROR: Failed to save PDF map assembly.[bookmark: pdfexp]

	Cause: The make_pdf_maps(self, ...) function of the Mapper() class (.site_packages/riverpy/cMapper.py) raises this error when the map assembly is corrupted.

	Remedy:

	PDF map export of Lifespan maps has troubles at the moment. We recommend to open the automatically created project RiverArchitect/02_Maps/CONDITION/maps_CONDITION_lyrXY.aprx and to export PDF maps in ArcGIS Pro: (1) Go to desired layout tab; (2) Ensure map layout fits desired export; (3) Go to the Share ribbon and click on the green arrow Layout (export layout).

	Ensure that no other program accesses the LifespanDesign/.cache/, MaxLifespan/.cache/, ModifyTerrain/.cache/, LifespanDesign/Output/, MaxLifespan/Output/, or ModifyTerrain/Output/ directories or their contents (close ArcGIS Pro and verify read/write rights for RiverArchitect/02_Maps/CONDITION/).

	ERROR: Failed to save WORKBOOK.

	Cause: Raised by calculate_sha(self) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s CHSI() class in SHArC/cHSI.py when it could not save CONDITION_FILI.xlsx.

	Remedy: Ensure that no other software uses SHArC/SHArea/CONDITION_FILI.xlsx.

	ERROR: Failed to set reach extents -- output is corrupted.

	Cause: The automated terrain modification with grading and/or widen features in the lower_dem_for_plants(self, feat_id, extents) function of the ModifyTerrain() class (ModifyTerrain/cModifyTerrain.py) or the creation of volume difference Rasters in the make_volume_diff_rasters(self) function of the VolumeAssessment() class (VolumeAssessment/cVolumeAssessment.py) raise this error when the reach extents defined in ModifyTerrain/.templates/computation_extents.xlsx are not readable.

	Remedy: Follow the instructions in reach preparation within the ModifyTerrain module for correct reach definitions.

	ERROR: FEAT SHORTNAME contains non-valid data or is empty.

	Cause: Raised by get_design_data(self) in MaxLifespan/cActionAssessment.py when the feature shortname Raster is empty or the `shortname* itself does not match the code conventions.

	Remedy:

	If code was modified: Review code modifications and ensure to define feature shortnames as listed in the River Design and Restoration Features pages. If a new feature was added, it also needs to be appended in the container lists (self.id_list, self.threshold_cols, self.name_list) of the Feature() class in .site_packages/riverpy/cDefinit ions.py. A new feature also requires modifications of the RiverArchitect/LifespanDesign/.templates/threshold_values.xlsx spreadsheet (Modify Threshold Values within the LifespanDesign module), in line with the column state in the self.threshold_cols* list of the Feature()` class.

	Check consistency of suspected lifespan/design Rasters, the correctness of lifespan/design input directory definitions (MaxLifespan Quick GUIde) and if needed re-run lifespan/design Raster Maker.

	ERROR: Flow series analysis failed.

	Cause: The make_flow_duration(self, ...) function in riverpy/cFlows.py (SeasonalFlowAssessment class) raises this error message when executing the self.build_flow_duration_data(self) function failed.

	Remedy: The provided flow series workbook may be erroneous. Ensure that the workbook follows the formats provided in 00_Flows7InputFlowSeries/flow_series_example_data.xlsx and follow up previous warning and error messages.

	ERROR: Incoherent data in RAS (Raster comparison).

	Cause: Raised by compare_Raster_set(self, ...) function of the ArcPyAnalysis() class in LifespanDesign/cLifespanDesignAnalysis.py when the provided input Raster RAS (hydraulic or scour fill or morphological units) are invalid.

	Remedy:

	Manually open the concerned RAS Raster and ensure that it complies with the requirements for input Rasters stated in the Conditions / Input Rasters section.

	Verify that the Rasters defined in 01_Conditions/CONDITION/input_definitions.inp (lines 8 to 18) correspond to the GRID Raster names in the select conditions folder in 01_Conditions/.

	ERROR: Input file not available.

	Cause: Raised by get_line_entries(self, line_no) function of the Info() class in LifespanDesign/cRead InpLifespan.py when it cannot access input files.

	Remedy:

	Ensure that the file 01_Conditions/CONDITION/input_definitions.inp exists in the directory LifespanDesign/.templates/ corresponding to the definitions in the Input definitions files of the LifespanDesign module.

	Ensure that the file mapping.inp exists in the directory LifespanDesign/.templates/ corresponding to the definitions in LifespanDesign Output maps.

	In the case of doubts: Replace 01_Conditions/CONDITION/input_definitions.inp and mapping.inp with the original files and re-apply modifications strictly following the Conditions / Input Rasters section.

	ERROR: Input Rasters contain invalid data.

	Cause: Error raised by the D2W class (GetStarted/cDepth2Groundwater.py) or the DET class (GetStarted/cDetrendedDEM.py) when the defined DEM or flow depth GeoTIFF are not usable.

	Remedy:

	Ensure that no other program uses the selected in DEM/flow depth Raster and Condition folder.

	Manually / visually verify the consistency of the provided DEM / flow depth Rasters.

	Avoid running both routines simultaneously and for multiple Conditions (there is only one .cache folder that is locked by every process call).

	ERROR: Insufficient data. Check Raster consistency and add more flows(?).

	Cause: The compare_Raster_set(self, Raster_set, threshold) function in LifespanDesign/cLifespanDesignAnalysis.py raises this error when insufficient hydraulic Rasters are provided or when the provided hydraulic Rasters have inconsistent data.

	Remedy:

	Make sure to provide at least two pairs of hydraulic (u and h) Rasters that correspond to two different discharges (one u and one h Raster per discharge).

	As a rule of thumb: the more hydraulic Rasters provided, the better are the lifespan maps.

	Verify Raster and corresponding lifespan definitions in 01_Conditions/CONDITION/input_definitions.inp (Input definitions files of the LifespanDesign module).

	ERROR: Invalid cell assignment for discharge / Rasters.

	Cause: Error raised by the make_condition_xlsx(self, fish_sn) function of the MakeTable() class in .site_packages/riverpy/cMakeTable.py) when it cannot write discharge values to RiverArchitect/SHArC/SHArea/CONDITION_FILI.xlsx.

	Remedy: Ensure that the flow duration curve is well defined (see the HHSI input preparation) and that RiverArchitect/SHArC/SHArea/CONDITION_FILI.xlsx is not used by any other application.

	

	ERROR: Invalid date and / or flow ranges in discharge series.

	Cause: Error raised by the make_flow_season_data(self, ...) function (SeasonalFlowProcessor class in .site_packages/riverpy/cFlows.py) when the data provided in the flow series workbook cannot be interpreted.

	Remedy: Ensure that the provided flow series workbook corresponds to the formats defined in the example data set (00_Flows/InputFlowSeries/flow_series_example_data.xlsx). In particular, the date and discharge columns and start rows are hard-coded (we will work on the issue in future …) and need to correspond those in the sample data set.

	ERROR: Invalid date assignment (Fish.xlsx).

	Cause: Error raised by the get_season_dates(self, ...) function of the Fish() class in .site_packages/riverpy/cFish.py ot the build_flow_duration_data(self) function (SeasonalFlowProcessor class in .site_packages/riverpy/cFlows.py) when either function cannot read the dates defined in .site_packages/templates/Fish.xlsx.

	Remedy: Ensure that the date assignment in .site_packages/templates/Fish.xlsx corresponds to template conditions.

	ERROR: Invalid feature ID.

	Cause: Error raised by the __init__(self, ...) function of the ThresholdDirector() class in /LifespanDesign/cThresholdDirector.py, when the feature IDs (shortnames) in /LifespanDesign/.templates/threshold_values.xlsx are incorrectly defined.

	Remedy:

	Ensure correct definitions in /LifespanDesign/.templates/threshold_values.xlsx (Modify Threshold Values within the LifespanDesign module).

	Consider replacing corrupted threshold workbooks with the original file.

	ERROR: Invalid file name or data.

	Cause: Error raised by the save_close_wb(self, *args) function of the MakeTable() or Write() class in .site_packages/riverpy/cMakeTable.py) or RiverArchitect/.site_packages/riverpy/cInputOutput.py), respectively, when it cannot save a workbook (typically RiverArchitect/SHArC/SHArea/CONDITION_FILI.xlsx or a copy of the cost master workbook [https://github.com/RiverArchitect/RA_wiki/ProjectMaker#pmcq]).

	Remedy:

	SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]: Close all applications that may use CONDITION_FILI.xlsx and ensure that its template exists. Detailed information on SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] workbook outputs are available in the HHSI input preparation.

	ProjectMaker [https://github.com/RiverArchitect/RA_wiki/ProjectMaker]: Close all applications that may use the cost master workbook (REACH_stn_costs_VERSION.xlsx) and ensure that it exists. Detailed information is available in ProjectMaker Cost quantity section.

	ERROR: Invalid interpolation data type (type(Q flowdur) == ...)

	Cause: Raised by interpolate_flow_exceedance(self, Q_value) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s FlowAssessment() class in SHArC/cFlows.py when the flow duration curve contains invalid data.

	Remedy: Ensure the correct setup of the used flow duration curve in SHArC/FlowDurationCurves/. The file structure must correspond to that of the provided template flow_duration_template.xlsx. Review the HHSI input preparation for details.

	ERROR: Invalid x-y coordinates in extent source [mapping.inp / reaches].

	Cause: The make_pdf_maps(self, ...) function of the Mapper class in .site_packages/riverpy/cMapper.py raises this error when either the LifespanDesign/.templates/mapping.inp, MaxLifespan/.templates/mapping.inp, or ModifyTerrain/.templates/computation_extents.xlsx contains invalid map definitions (extents).

	Remedy: Ensure that the extent definitions in LifespanDesign/.templates/mapping.inp and/or ModifyTerrain/.templates/computation_extents.xlsx are valid numeric values according to the module descriptions.

	ERROR: Invalid keyword for feature type.

	Cause: The Manager class in MaxLifespan/cFeatureActions.py raises this error when it received a feature_type argument that is not "terraforming", "plantings", "nature-based engineering", or "maintenance". The error may occur either after code modifications or whengeo_file_maker(condition, feature_type, *args) in MaxLifespan/action_planner.py was executed as standalone or imported as a package in an external application.

	Remedy:

	Ensure that code extensions comply with coding conventions and instructions in the MaxLifespan module code modification possibilities.

	Ensure that external calls of geo_file_maker(condition, feature_type, *args) contain an acceptable feature_type (i.e., feature_type= either "terraforming", "plantings", "nature-based engineering", or "maintenance").

	ERROR: Invalid reference map for [...] (skipping).

	Cause: Error raised by mapping routines when the reference map is not present in the mapping project template or the Condition project file (.aprx).

	Remedy: Verify that the project file contains all default layouts and maps (layout and map names should be identic).

	ERROR: Invalid volume name.

	Cause: Error raised by the write_volumes(self, ...) function of the Writer() class in .site_packages/riverpy/cReachManager.py, when the template sheet in the output (or template) workbook (VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx) are inaccessible.

	Remedy: Ensure that VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx are not opened in any other program.

	ERROR: Lifespan data fetch failed.

	Cause: The get_lifespan_data(self) orget_design_data(self) function of the ArcpyContainer class in MaxLifespan/cActionAssessment.py raise this error when it could not retrieve lifespan or design maps from the defined lifespan/design input directory.

	Remedy:

	Check lifespan/design folder definitions (review MaxLifespan Quick GUIde).

	Ensure that lifespan and/or design Rasters are in the defined folder.

	ERROR: Mapping could not assign xy-values. Undefined zoom.

	Cause: Error raised by the zoom2map(self, xy) functions of the Mapper() class (.site_packages/riverpy/cMapper.py) when it receives a bad format of x-y values.

	Remedy:

	LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] or MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan]: Ensure the correct format of mapping.inp is correct.

	ModifyTerrain [https://github.com/RiverArchitect/RA_wiki/ModifyTerrain]: Ensure correct setup of ModifyTerrain/.templates/computation_extents.xlsx (reach preparation within the ModifyTerrain module).

	For more settings, review the Mapping wiki.

	ERROR: Mapping failed.

	Cause: The make_pdf_maps(self, ...) function of the Mapper() class (.site_packages/riverpy/cMapper.py) raises this error when it could not create PDF maps.

	Remedy: Ensure that all layouts (see module-specific layout names) are consistently defined in RiverArchitect/02_Maps/templates/river_template.aprx and/or RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx. Note that modifying layout and/or layer names may cause this error. Therefore, the template layer and layout names must not be changed. Read more about modifications of the smybology, legend, map extents, or code modifications in the Mapping wiki.

	ERROR: Map layout preparation failed.

	Cause: The prepare_layout(self, ...) function of the Mapper() class (.site_packages/riverpy/cMapper.py) raises this error when it encounters problems with either the provided Rasters or the layouts in the ArcGIS project file (.aprx).

	Remedy:

	LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign]: If a layout was modified (see default list), ensure that links to databases and datasets are correct.

	MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan]: Ensure that all relevant layouts (see default list) are contained in the ArcGIS project file (see mapping descriptions). If needed, add new layouts after code modifications (the MaxLifespan module code modification possibilities).

	VolumeAssessment: Ensure that all relevant layouts (see default list) are contained in the ArcGIS project file (see mapping descriptions).

	ERROR: Missing (or wrong format of) Raster input definitions.

	Cause: Raised by get_line_entries(self, line_no) function of the Info() class in LifespanDesign/cReadInpLifespan.py when 01_Conditions/CONDITION/input_definitions.inp is corrupted.

	Remedy: Ensure that the file 01_Conditions/CONDITION/input_definitions.inp exists in the directory LifespanDesign/.templates/ corresponding to the definitions in the input definitions files. In case of doubts: Replace 01_Conditions/CONDITION/input_definitions.inp with the original file and re-apply modifications strictly following the Conditions / Input Rasters section.

	ERROR: Multiple openings of Fish.xlsx. Close all office apps ...

	Cause: Raised by the assign_fish_names(self) function of the Fish() class in .site_packages/riverpy/cFish.py when .site_packages/templates/Fish.xlsx is opened by another program or non-existent.

	Remedy: Ensure that the file .site_packages/templates/Fish.xlsx exists and close any software that may use the workbook.

	ERROR: No HSI assigned for parameter type ...

	Cause: Raised by the get_hsi_curve(self, species, lifestage, par) function of the Fish() class in SHArC/cFish.py when .site_packages/templates/Fish.xlsx it expected a habitat suitability curve for `par*, but it could not find values..

	Remedy: Ensure that the file .site_packages/templates/Fish.xlsx has valid contents according to SHArC Fish section.

	ERROR: No project/layout available (...).

	Cause: Error raised by mapping routines when map making without project file (.aprx) is invoked.

	Remedy: Verify that the project file contains all default layouts.

	ERROR: No reference layout found for [...] (skipping).

	Cause: Error raised by mapping routines when the geofile to be mapped is not associated with any layout in the template or Condition project file (.aprx).

	Remedy: Verify that the project file contains all default layouts.

	ERROR: No reference map found for [...] (skipping).

	Cause: Error raised by mapping routines when the geofile to be mapped is not associated with any map in the template or Condition project file (.aprx).

	Remedy: Verify that the project file contains all default layouts (the layout and map names should be identic).

	ERROR: *PAR* - Raster copy to Output/Rasters folder failed.

	Cause: The .cache folder does not exist or does not contain GRID Rasters or the output folder is not accessible. This error is likely to occur when other errors occurred previously.

	Remedy:

	Follow troubleshooting of other error messages and re-run.

	Avoid modifications of any folder in the code directory while the program is running, in particular, .cache, 01_Conditions/, LifespanDesign/Output/Rasters/ and 02_Maps/CONDITION/.

	ERROR: Raster copy to Output folder failed.

	Cause: The save_Rasters(self) function of the ModifyTerrain() class in ModifyTerrain/cModifyTerrain.py raises this error when saving a terrain difference or new DEM Raster failed.

	Remedy: Refer to the error ERROR: Raster could not be saved. message.

	ERROR: Raster could not be saved.

	Cause: The save_rasters(self) function of the ModifyTerrain() (ModifyTerrain/cModifyTerrain.py) or the VolumeAssessment class (VolumeAssessment/cVolumeAssessment.py) raise this error when a terrain differences or new DEM Raster is corrupted.

	Remedy: Potential reasons for corrupted Rasters are:

	The computed volume difference or new DEM Raster is empty or contains NoData pixels only. The design parameters or Raster of the concerned feature need to be reviewed.

	The ModifyTerrain/.cache/ folder is locked by another program. Close potential applications, and if necessary, reboot the system.

	If ModifyTerrain/.cache/ was not empty before the module execution, error may occur. Manually delete ModifyTerrain/.cache/ if it still exists after a run task.

	The directory ModifyTerrain/Output/Rasters/CONDITION/ or VolumeAssessment/Output/PSEUDO_CONDITION/ was deleted or it is locked by another program. Ensure that the directory exists and no other program uses ModifyTerrain/Output/Rasters/CONDITION/ or VolumeAssessment/Output/PSEUDO_CONDITION/ or their contents.

	ERROR: Scale is not INT. Substituting scale: 2000.

	Cause: Raised by get_map_scale(self) function of the Info() class in either LifespanDesign/cReadInpLifespan.py or MaxLifespan/cReadActionInput.py when it cannot interpret the value assigned to the map scale.

	Remedy: Ensure that the file mapping.inp (in LifespanDesign/.templates/ or MaxLifespan /.templates/) has a correct assignment of the map scale according to the descriptions in LifespanDesign Output maps.

	ERROR: Shapefile conversion failed.

	Cause: Raised by calculate_sha(self) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s CHSI() class in SHArC/cHSI.py when it could not convert the CHSI Raster to a shapefile.

	Remedy:

	Ensure that the SHArea threshold has a meaningful value between 0.0 and 1.0 (SHArC Intro).

	Ensure that neither the directory SHArC/.cache/ nor the directory SHArC/SHArea/ or their contents are in use by other programs.

	Review the input settings according to SHArC Quick GUIde.

	Follow up earlier error messages.

	ERROR: TEMPLATE sheet does not exist.

	Cause: Error raised by the make_condition_xlsx(self, fish_sn) of the MakeTable() class in .site_packages/riverpy/cMakeTable.py) when the template sheet in the output (template) workbooks SHArC/.templates/CONDITION_sharea_template_[...].xlsx) are corrupted.

	Remedy: Ensure that SHArC/.templates/CONDITION_sharea_template_[...].xlsx contains the summary sheet and that SHArC/.templates/empty.xlsx is available; re-install the templates if necessary.

	ERROR: The provided boundary file (%s) is invalid.

	Cause: Raised the GetStarted module’s sub-condition creator function (make_sub_condition in RiverArchitect/GetStarted/fSubCondition.py), when the defined shapefile or Raster contains invalid data.

	Remedy: Ensure that the provided shapefile or Raster fullfils the requirements explained in the GetStarted - Create Sub-Condition section.

	ERROR: The Raster name is not coherent with the name conventions. Name correction needed.

	Cause: Error raised by the MakeFlowTable class (riverpy/cMakeTable.py) when a Raster was wrongly identified as being a flow depth Raster because of a violation of file name conventions.

	Remedy: Ensure that all file names in the 01_Conditions/CONDITION/ folder follow the file name conventions. If the Condition folder contains other files than flow depth and velocity GeoTiffs starting with the letter h or u, rename these files or remove them from the Condition folder.

	ERROR: The selected folder does not contain any depth/velocity Raster containing the defined string.

	Cause: Error raised by the ConditionCreator class (GetStarted/cConditionCreator.py) when the defined folder does not contain any valid depth or velocity Raster.

	Remedy:

	Ensure that no other program uses the selected folder.

	Manually / visually verify the selected folder and provided settings for creating the Condition.

	ERROR: The source discharge file contains non-detectable formats (...).

	Cause: The date format provided in the hydraulic habitat suitability index flow duration curve preparation file contains invalid date formats.

	Remedy: Ensure that the select flow series file corresponds to the file requirements. Use the provided example data file (RiverArchitect/SHArC/FlowDurationCurves/flow_series_example_data.xlsx) as template workbook for preparing flow series. The flow series workbook must be an .xlsx file and the dates must be contained in col. A, starting from row 3. The default format is DD-MMM-YY (e.g., 14-June-88 for June 14th, 1988).

	ERROR: u/h/hyd--Raster analysis does not accept ras_*name* Raster.

	Cause: Internal programming error: A parameter module called a Raster which does not match the batch processing hierarchy.

	Remedy: Move new model downward in the processing hierarchy and avoid calling an u/h/hyd–Raster with the optional argument Raster_info.

	ERROR: Volume value assignment failed.

	Cause: Error raised by the write_volumes(self, ...) function of the Writer() class in .site_packages/riverpy/cReachManager.py) when it received invalid volume data.

	Remedy: Ensure that no other program uses VolumeAssessment/Output/CONDITION_volume.xlsx and traceback earlier errors (modified DEM Rasters may be corrupted).

	ERROR: Writing failed.

	Cause: Error raised by the write_volumes(self, ...) function of the Writer() class in .site_packages/riverpy/cReachManager.py) when the template it could not add new sheets in VolumeAssessment/Output/CONDITION_volumes.xlsx or write to copies of VolumeAssessment/templates/volume_template.xlsx.

	Remedy: See error message ERROR: Failed to create WORKBOOK.

	ERROR: Wrong format of lifespan list (.inp)

	Cause: Raised by lifespan_read(self) (in LifespanDesign/cReadInpLifespan.py) when the lifespan list in 01_Conditions/CONDITION/input_definitions.inp has a wrong format or is empty.

	Remedy: Ensure that the file 01_Conditions/CONDITION/input_definitions.inp (in LifespanDesign/.templates/) contains a lifespan list (return periods list) with not more than six comma-separated entries according to the definitions in the Input definitions files of the LifespanDesign module.

	ExceptionERROR: (arcpy) [...].

	Cause: The error is raised if any arcpy application of any module encountered problems; e.g., the analysis_... and design_... functions in LifespanDesign/cLifespanDesignAnalysis.py raise this error when Raster calculations could not be performed. Missing Rasters, bad Raster assignments or bad Raster calculation expressions are possible reasons. The error can also occur when the SpatialAnalyst license is not available.

	Remedy:

	Make sure that a SpatialAnalyst license is available.

	Trace back previous error and warning messages.

	Verify Raster calculation expressions in concernedanalysis_... and design_... functions (LifespanDesign/cLifespanDesignAnalysis.py).

	Verify Raster definitions in concernedanalysis_... and design_... functions (LifespanDesign/cLifespanDesignAnalysis.py).

	Verify Raster definitions of used parameters (cParameters.py and input files *.inp according to the Conditions / Input Rasters section).

	If further system errors are stated, trace back error messages.

	ExceptionERROR: Cannot find package files [...].

	Cause: The program cannot retrieve the listed internal files.

	Remedy: Check the installation of the package and its file structure according to the Requirements stated in the Introduction and Installation.

	ExceptionERROR: Cannot open reference (condition) ...

	Cause: Raised by the ModifyTerrain() class (__init__(self,condition, feature_type, *args)) in ModifyTerrain/cModifyTerrain.py when it cannot find a … Raster in 01_Conditions/CONDITION/ (or other user-defined input directory), where … is either a dem.tif or a wt_depth_base.tif Raster. A wt_depth_base.tif Raster is required for automated terrain modification after grading and/or widen features.

	Remedy: Ensure that the missing Raster (dem or a wt_depth_base) exists in 01_Conditions/CONDITION/, or if applies, the user-defined input directory. If no wt_depth_base.tif Raster is available, the terrain modification of grading and/or widen features cannot be automated. In this case, consider adding a new DEM automation function (explained in the Add Routine section in the ModifyTerrain module) or modifying the DEM manually.

	ExceptionERROR: Could not find base Raster for assigning lifespans.

	Cause: Raised by MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan]’s ArcpyContainer() class (__init__(self,condition, feature_type, *args)) in MaxLifespan/cActionAssessment.py when it cannot find its zero Raster template in MaxLifespan/.templates/Rasters/zeros.tif.

	Remedy: Follow the instructions for the error message ExceptionERROR: Unable to create ZERO Raster. Manual intervention required:... to manually create the MaxLifespan/.templates/Rasters/zeros.tif Raster.

	ExceptionERROR: Missing fundamental packages (required: ...).

	Cause: The listed (required) packages are not available.

	Remedy: Check installation of required packages and code structure files according to the Requirements stated in the Introduction and Installation.

	ExceptionERROR: Unable to create ZERO Raster. Manual intervention required

	Cause: MaxLifespan [https://github.com/RiverArchitect/RA_wiki/MaxLifespan] failed to create a zero Raster covering the computation area.

	Remedy: The Raster creation needs to be manually made in ArcGIS Pro’s Python interpreter (the external interpreter could not do the job and only the cuckoo from California knows why). Thus, manually create the zeros Raster as follows:

	Launch ArcGIS Pro and its implemented Python window (Geoprocessing dropdown menu: Python).

	Enter the following sequences (replace REPLACE_... according to the local environment):

import os

from arcpy.sa import *

zero_ras_str = os.getcwd() + ".templates\Rasters\zeros.tif"

condition = "REPLACE_CONDITION"

base_dem = arcpy.Raster("REPLACE_PATHRiverArchitectLifespanDesignInput" + condition + "dem.tif")
 arcpy.gp.overwriteOutput = True
 arcpy.env.extent = base_dem.extent
 arcpy.env.workspace = “D:\PythonRiver\Architect\LifespanDesign\Input” + condition + “”
 zero_ras = Con(IsNull(base_dem), 0, 0)
 zero_ras.save(zero_ras_str)`

	Close ArcGIS Pro

	ExecuteERROR: (arcpy) [...].

	Cause: Similar toExceptionERROR: (arcpy) The error is raised by arcpy applications of all modules; e.g., by the analysis_... and design_... functions in LifespanDesign/cLifespanDesignAnalysis.py or when Raster calculations could not be performed. Missing Rasters, bad Raster assignments or bad Raster calculation expressions are possible reasons. The error can also occur when the SpatialAnalyst license is not available.

	Remedy: See ExceptionERROR: (arcpy) [...]

	Internal Error:

	Cause: Internal Error messages are raised when the code communicates erroneous data between class functions.

	Remedy:

	If the code was modified, revise or revert changes.

	If Internal Errors occur that are not known issues as stated in other error messages, please provide us with feedback (use the bug report template [https://github.com/riverarchitect/program/blob/master/.github/ISSUE_TEMPLATE/bug_report.md] or send us an email: river.architect.program [at] gmail.com)

	OSError:

	Cause: arcpy raises this error for various reasons; in particular, if code was modified or the code environment is not set up properly.

	Remedy: Check the correct installation of River Architect and input files (refer to the Installation and Signposts pages and use the correct Python environment). Make sure that no other program uses files required by River Architect.

	WindowsError: [Error 32] The process cannot access the file because ...

	Cause: Files in the .cache folder or the Output folder are used by another program.

	Remedy:

	Make sure that ArcGIS Pro is not running.

	Make sure that no other code copy (Python) uses these folders.

Warning messages

	WARNING: .cache folder will be removed by package controls.

	Cause: Raised by clear_cache(self) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s CHSI() class in SHArC/cHSI.py when it could not clear and remove the .cache/ folder.

	Remedy: Ensure that no other software uses the temporary Rasters stored in SHArC/.cache/, and if necessary, delete the folder manually after quitting the module.

	WARNING: ### is not a number.

	Cause: Functions raise this warning message when a float-number type was expected, but another, non-convertible format was provided.

	Remedy: Verify if the results are consistent. If problems occur, make sure that the provided input data contain numbers or valid nan formats (NoData for Rasters and empty cells for workbooks) only.

	WARNING: Bad value (...).

	Cause: Raised by calculate_sha(self) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s CHSI() class in SHArC/cHSI.py when a CHSI polygon contains an invalid value.

	Remedy: Review cHSI Rasters SHArC/CHSI/CONDITION/.

	WARNING: Cannot identify reaches.

	Cause: Raised by VolumeAssessment().__init__(...) in VolumeAssessment/cVolumeAssessment.py when the provided reach names are inconsistent with those listed in ModifyTerrain/.templates/computation_extents.xlsx.

	Remedy: Ensure that ModifyTerrain/.templates/computation_extents.xlsx does not contain more than eight reaches (i.e., only cells B6:C13 contain reach names and identifiers, also see reach preparation within the ModifyTerrain module).

	WARNING: Cannot load ...\LifespanRasterSymbology.lyrx.

	Cause: Raised by prepare_layout(...) of the Mapper() (.site_packages/riverpy/cMapper.py) when it cannot load /RiverArchitect/02_Maps/templates/symbology/LifespanRasterSymbology.lyrx.

	Remedy: Ensure that /RiverArchitect/02_Maps/templates/symbology/LifespanRasterSymbology.lyrx exists and that the layer file is not broken (e.g., by opening the file in ArcGIS Pro).

	WARNING: Cannot zoom to defined extent.

	Cause: Raised by the zoom2map(...) function of the Mapper() class (.site_packages/riverpy/cMapper.py) when it cannot interpret the provided coordinates.

	Remedy:

	All modules: Ensure that the mapping.inp and the reach definitions files contain valid data.

	LifespanDesign: Ensure that either a correct background Raster dataset was defined prior to mapping.

	WARNING: computation_extents.xls contains too many reach names.

	Cause: Raised by Read().get_reach_info(self, type) in .site_packages/riverpy/cReachManager.py when ModifyTerrain/.templates/computation_extents.xlsx contains more than eight reach names in columns B and/or C.

	Remedy: Ensure that ModifyTerrain/.templates/computation_extents.xlsx does not contain more than eight reaches (i.e., only cells `B6:C13* contain reach names and identifiers, also see reach preparation within the ModifyTerrain module).

	WARNING: Conversion to polygon failed (FEAT).

	Cause: Raised by identify_best_features(self) in MaxLifespan/cActionAssessment.py when the arcpy.RasterToPolygon_conversion(FEAT Raster) failed (e.g., because of an empty FEAT Raster).

	Remedy: An empty FEAT Raster of best lifespans occurs when the feature has no spatial relevance. Consider other terrain modifications or maintenance features to increase the features lifespans and start over planning the feature (set).

	WARNING: Could not access hydraulic Raster extents. Using MAXOF instead.

	Cause: Raised by the D2W class (GetStarted/cDepth2Groundwater.py) when the defined flow depth GeoTIFF has no valid extents.

	Remedy: Manually / visually verify the provided flow depth Raster and make corrections / overwrite it if necessary.

	WARNING: Could not clear/remove .cache.

	Cause: All modules may raise this warning message when the content in the .cache folder was accessed and locked by another software.

	Remedy: Make sure that no other software, including ArcGIS Pro or explorer.exe, uses the MODULE/.cache folder.

	WARNING: Could not clean up PDF map temp_pages.

	Cause: The make_pdf_maps(self, map_name, *args, **kwargs) functions of the Mapper() class (.site_packages/riverpy/cMapper.py) creates single PDFs of every map image (extents defined in mapping.inp or the reach coordinates workbook). These single-page PDFs are finally combined into one PDF map assembly and the single-page PDFs are deleted afterward.

	Remedy: Ensure that no other program is using the PDF files in RiverArchitect/02_Maps/CONDITION/ while mapping is in progress (close ArcGIS Pro).

	WARNING: Could not crop lifespan Raster extents to wetted area.

	Cause: Raised by the ArcPyAnalysis class (LifespanDesign/cLifespanDesignAnalysis.py) when it failed to crop lifespan maps (Rasters) to the extents of the depth Raster associated with the highest discharge analyzed.

	Remedy:

	Manually / visually verify the provided flow depth Rasters and make corrections / overwrite it if necessary.

	If cropping the lifespan Raster to the wetted area of the highest discharge is not desired, apply the following Raster calculation to the highest discharge’s flow depth Raster to eliminate NoData values (otherwise, all NoData pixels are excluded from the lifespan Raster):

Con((IsNull(hQQQQQQ) == 1), (IsNull(hQQQQQQ) * 0), Float(hQQQQQQ))

	WARNING: Could not divide [...] by [...]

	Cause: Raised by calculate_relative_exceedance(self) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s FlowAssessment() class in SHArC/cFlows.py when the flow duration curve contains invalid data.

	Remedy: Ensure the correct setup of the used flow duration curve in SHArC/FlowDurationCurves/. The data types and file structure must correspond to that of the provided template flow_duration _template.xlsx and all discharge values need to be positive floats. Review the HHSI input preparation for details.

	WARNING: Could not find Lifespan Raster (...).

	Cause: Raised by the ProjectMaker/s30_terrain_stabilization/’s or ProjectMaker/s21_plantings_stabilization/’s main() function when it cannot find lifespan Rasters.

	Remedy: Go to the LifespanDesign tab for the selected Condition. Create lifespan maps for the goup layers plantings, nature-based engineering, and connectivity. ProjectMaker absolutely requires Grains / Boulders (lf_grains.tif), and optionally requires Streamwood (lf_wood.tif) and nature-based engineering (other) (lf_bio.tif).

	WARNING: Could not get flow depth Raster properties. Setting [...]

	Cause: The crop_input_Raster(self, ...) function (SHArC/cHSI.py) prints this warning message when it cannot read the Raster properties from the defined input flow depth Raster.

	Remedy: Make sure that the defined flow depth Raster exists in RiverArchitect/01_Conditions/CONDITION/.

	WARNING: Could not get minimum flow depth [...]. Setting h min [...]

	Cause: The crop_input_Raster(self, ...) function (SHArC/cHSI.py) prints this warning message when it could not read the minimum flow depth from Fish.xlsx. A default value of 0.1 (ft or m) is used to delineate relevant flow regions.

	Remedy: Make sure that the defined Fish species / lifestage is assigned a cover value and at least one flow depth value in Fish.xlsx according to the definitions in CoverHSI.

	WARNING: Could not identify maximum flow in flow duration curve.

	Cause: The get_flow_duration_data(self, ...) function (riverpy/cFlows.py) prints this warning message when it could not identify a maximum flow for interpolating flow exceedance probabilities.

	Remedy: Open 00_Flows/CONDITION/flow_duration_fili and verify that the discharges in the first spreadsheet are correct.

	WARNING: Could not load /01_Conditions/CONDITION/back.tif - ...

	Cause: The sect_extent() function (LifespanDesign/cLifespanDesignAnalysis.py) prints this warning message when it could not load the back.tif Raster in the CONDITION folder. This warning message can only occur when the checkbox Limit computation extent to background (back.tif) Raster is activated.

	Remedy: Make sure that there is a back.tif Raster in the CONDITION folder. Otherwise, uncheck the checkbox, but using a background Raster back.tif is strongly recommended.

	WARNING: Could not reset styles.

	Cause: Raised by Write().write_volumes(self, ...) in .site_packages/riverpy/cReachManager.py when the template sheet in the output (template) workbook (VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx) is either locked or not accessible.

	Remedy: Ensure that no other program uses VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx and that both workbooks have not been accidentally deleted.

	WARNING: Could not read project area extents.

	Cause: Raised by SHArC.get_extents(self, ...) in ProjectMaker/cSHArC.py when the function failed to read the project area extents from the ProjectArea.shp shapefile.

	Remedy: Ensure that the ProjectArea.shp shapefile is correctly created (in particular the Attributes Table), according to Project Area Polygon preparation.

	WARNING: Could not remove .cache folder.

	Cause: Raised by multiple modules, if deleting the temporary .cacheXXXXXXX folder failed.

	Remedy: Ensure that no other program uses the cache folder and delete exiting .cache folders in the concerned modules manually.

	WARNING: Could not set project area extents ().

	Cause: Raised by SHArC().set_env(self) in /ProjectMaker/cSHArC.py when the function failed to set project area extents.

	Remedy: Occurs when the CHSI Raster associated with a certain discharge is empty. Ignore this Warning if the CHSI Raster was correctly identified as being empty, otherwise, revise CHSI Raster creation with the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module.

	WARNING: Design map - Could not assign frequency threshold. [...]

	Cause: Design maps, such as stable grain size, refer to hydraulic data related to a defined return period. Ifdesign_... functions) LifespanDesign/cLifespanDesignAnalysis.py) cannot identify a particularthreshold_freq value,design_... functions automatically try to use hydraulic data related to the first entry of lifespans* (Return periodsentry in01_Conditions/CONDITION/input_definitions.inp`, see the Input definitions files of the LifespanDesign module).

	Remedy:

	Assign a float value to the concerned feature in the Mobility frequency threshold row of the LifespanDesign/.templates/threshold_values.xlsx spreadsheet (see also Modify Threshold Values within the LifespanDesign module).

	Make sure that the defined defined Mobility frequency threshold* float is consistent with the defined Return periodsin01_Conditions/CONDITION/input_definitions.inp` (see the Input definitions files of the LifespanDesign module).

	WARNING: Empty design Raster [...]

	Cause: The analyzed feature is not applicable in the defined range.

	Remedy:

	If the feature is not intended to be applied anyway, ignore the warning message.

	If the feature is intended to be applied, manual terrain modifications adapting the feature’s threshold values may be necessary.

	WARNING: Empty lifespan Raster [...]

	Cause: The analyzed feature is not applicable in the defined range.

	Remedy:

	If the feature is not intended to be applied anyway, ignore the warning message.

	If the feature is intended to be applied, manual terrain modifications adapting the feature’s threshold values may be necessary.

	WARNING: Failed to align input raster [...].

	Cause: Raised by ConditionCreator().fix_alignment in GetStarted/cConditionCreator.py when it could not align the stated raster.

	Remedy: Verify if the stated Raster contains invalid values (exists). Complex filenames that do not comply with the River Architect filename convention may also cause this error. Rename all files with the Tools/rename_files.py script (see inline code comments for instructions) to adapt all files to the River Architect filename convention and re-run Align Rasters (if required).

	WARNING: Failed to arrange worksheets.

	Cause: Raised by Write().write_volumes(self, ...) in .site_packages/riverpy/cReachManager.py when it could not bring to the front the latest copy of the template sheet in the output (template) workbook (VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx), which contains the calculation results.

	Remedy: Traceback earlier error and warning messages. Ensure that no other program uses VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx and that both workbooks have not been accidentally deleted.

	WARNING: Failed to write unit system to worksheet.

	Cause: Raised by Write().write_volumes(self, ...) in .site_packages/riverpy/cReachManager.py when it could not write volume (numbers) to a copy of the template sheet in the output (template) workbook (VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx).

	Remedy: Traceback earlier error and warning messages. Ensure that no other program uses VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx and that both workbooks have not been accidentally deleted.

	WARNING: Flow_duration[...].xlsx has different lengths of [...]"

	Cause: Raised by get_flow_data(self, *args) of SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC]’s FlowAssessment() class in SHArC/cFlows.py when the flow duration curve contains invalid data.

	Remedy: Ensure that columns B and C of the flow duration curve workbook have the same length (in particular the last value/row must be the same) and check for empty cells.

	WARNING: Identification failed (FEAT).

	Cause: Raised by identify_best_features(self) in MaxLifespan/cActionAssessment.py when the analyzed feature cannot be matched with the internal best lifespan Raster.

	Remedy: Features with very low lifespan may result in empty Rasters. Consider other terrain modifications or maintenance features to increase the features lifespans and start over planning the feature (set).

	WARNING: Invalid curve data (Fish.xlsx): PAR= ... , HSI=

	Cause: Raised by HHSI().nested_con_raster_calc(self, ...) in SHArC/cHSI.py when the HSI curve data provided in .site_packages/templates/Fish.xlsx are non-numeric or otherwise invalid.

	Remedy:

	Ensure that Physical Habitats in Fish.xlsx are correctly defined according to the definitions.

	Ensure that the curve data in Fish.xlsx are suitable numeric values for linear interpolation.

	WARNING: Invalid feature names for column headers.

	Cause: Raised by Write().write_volumes(self, ...) in .site_packages/riverpy/cReachManager.py when it could not write feature names to a copy of the template sheet in the output (template) workbook (VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx).

	Remedy:

	Ensure that ModifyTerrain/.templates/computation_extents.xlsx contains valid reach descriptions (reach preparation within the ModifyTerrain module).

	Ensure that no other program uses VolumeAssessment/Output/CONDITION_ volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx and that both workbooks have not been accidentally deleted.

	WARNING: Invalid alignment Raster name ([...]).

	Cause: Raised by ConditionCreator().fix_alignment(self, ...) in GetStarted/cConditionCreator.py when it could not open the stated raster.

	Remedy: Complex filenames that do not comply with the River Architect filename convention may also cause this error. Rename all files with the Tools/rename_files.py script (see inline code comments for instructions) to adapt all Raster filenames to the River Architect filename convention and re-run Align Rasters (if required).

	WARNING: Invalid type assignment -- setting reach names to IDs.

	Cause: Raised by Read().get_reach_info(self, type) in .site_packages/riverpy/cReachManager.py when The type argument is notfull_name* orId. In this case, the [*ModifyTerrain*][5] module uses column CinModifyTerrain/.templates/computation_extents.xlsx` for reach names and IDs.

	Remedy: This warning message only occurs if the GUI application was changed or when the ModifyTerrain [https://github.com/RiverArchitect/RA_wiki/ModifyTerrain] module is externally called with bad argument order. Review the argument order/assignments in the external call and ensure that The type* variable is in the allowed_types = [“full_name”, “id”]` list.

	WARNING: Invalid unit_system identifier.

	Cause: Raised by ModifyTerrain.__init__() (ModifyTerrain/cModifyTerrain.py) or the VolumeAssessment.__init__() (VolumeAssessment/cVolumeAssessment.py) when the unit system identifier is not either us or si. The program will use the default unit system (U.S. customary).

	Remedy: This warning message only occurs if the GUI application was changed or when the ModifyTerrain [https://github.com/RiverArchitect/RA_wiki/ModifyTerrain] module is externally called with bad argument order. Review the argument order/assignments in the external call var = mt.ModifyTerrain(condition=..., unit_system=..., ...).

	WARNING: Merge operation failed (empty shapefiles?).

	Cause: Raised by the ProjectMaker/s30_terrain_stabilization/’s main() function when the nature-based engineering and Angular Boulder shapefiles for stabilizing the terrain failed.

	Remedy: One or both stabilization shapefiles (ProjectMaker/ProjectName/Geodata/Shapefiles/Terrain_stab.shp or .../Terrain_boulder_stab.shp) may be empty. Check source data or consider to change the user-defined requried critical lifespan.

	WARNING: No Lifespan / Design Raster found (...).

	Cause: Raised by the MaxLifespan’s Director class (MaxLifespan/cFeatureActions.py) when it cannot find any valid lifespan or design Raster for a condition.

	Remedy: Make sure to run the LifespanDesign [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] module for at least one feature within the selected group for a condition. If necessary, verify the contents of lifespan Rasters in LifespanDesign/Output/Rasters/CONDITION/ (e.g., empty Rasters and Raster names must contain lf or ds to be recognized).

	WARNING: Non-numeric values in data.

	Cause: Raised by the interpolation functions of the Interpolator class (.site_packages/riverpy/cInterpolator.py) when the x data points that should get an interpolated y-value are not numeric.

	Remedy: Check the condition flow duration and/or time duration curve and remove any non-numeric value from the discharge columns.

	WARNING: Old logfile is locked [...].

	Cause: Raised by the logging_start(logfile_name) function (multiple classes) when the logfiles are locked by another process. The parenthesis [...] indicates the concerned run task.

	Remedy: Ensure that the logfiles of the concerned module are not opened in any other process or program.

	WARNING: PlantExisting.shp is corrupted or non-existent.

	Cause: Raised by the ProjectMaker/s20_plantings_delineation/’s main() function when it could not process the existing plants shapefile.

	Remedy: Ensure that existing plants (ProjectMaker/ProjectName/Geodata/Shapefiles/PlantExisting.shp) is correctly set up according to the descriptions in the wiki. However, this raster is not absolutely required.

	WARNING: Substituting user-defined crit. lifespan (...) with

	Cause: Error raised by the ProjectMaker/s30_terrain_stabilization/’s main() function when the user-defined critical lifespan for terrain stabilization does not exaclty correspond to the available hydraulic Rasters defined for the provided Condition.

	Remedy: Ensure to only use lifespans defined for the provided Condition (cf. definition of flow duration periods).

	WARNING: The provided path to Rasters for mapping is invalid. Using templates instead.

	Cause: Raised by the Mapper() class in .site_packages/riverpy/cMapper.py when it could not process the provided input Raster path.

	Remedy: If code changes were made, ensure that Mapper() received correct CONDITION and map_type arguments. Otherwise, Mapper() will use the template Raster files located in RiverArchitect/02_Maps/templates/Rasters/.

	WARNING: Volume value assignment failed.

	Cause: Raised by Write().write_volumes(self, ...) in .site_packages/riverpy/cReachManager.py when it could not write volume (numbers) to a copy of the template sheet in the output (template) workbook (VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx).

	Remedy: Traceback earlier error and warning messages. Ensure that no other program uses VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.xlsx and that both workbooks have not been accidentally deleted.

 DISCLAIMER

DISCLAIMER

No warranty is expressed or implied regarding the usefulness or completeness of the information provided by River Architect and its documentation (wiki). References to commercial products do not imply endorsement by the Authors of River Architect. The concepts, materials, and methods used in the algorithms and described in the wiki are for informational purposes only. The Authors have made substantial effort to ensure the accuracy of the algorithms and the wiki, but science of prediction is uncertain and the Authors shall not be held liable, nor their employers or funding sponsors, for calculations and/or decisions made on the basis of application of River Architect. The information is provided “as is” and anyone who chooses to use the information is responsible for her or his own choices as to what to do with the data and the individual is responsible for the results the follow from their decisions.

 DEVELOPMENT

DEVELOPMENT

	Principles & Requiremments

	Add a module to River Architect

	Use Python templates

	Bind the new module to the GUI

	Edit the Wiki

	Use git

[bookmark: raprin]
The development of River Architect follows the Zen of Python, also known as PEP20 [https://www.python.org/dev/peps/pep-0020/].

	>>> import this
	The Zen of Python, by Tim Peters

	Beautiful is better than ugly.
	Explicit is better than implicit.
	Simple is better than complex.
	Complex is better than complicated.
	Flat is better than nested.
	Sparse is better than dense.
	Readability counts.
	Special cases aren't special enough to break the rules.
	Although practicality beats purity.
	Errors should never pass silently.
	Unless explicitly silenced.
	In the face of ambiguity, refuse the temptation to guess.
	There should be one-- and preferably only one --obvious way to do it.
	Although that way may not be obvious at first unless you're Dutch.
	Now is better than never.
	Although never is often better than *right* now.
	If the implementation is hard to explain, it's a bad idea.
	If the implementation is easy to explain, it may be a good idea.
	Namespaces are one honking great idea -- let's do more of those!

The River Architect Wiki for developers assumes a basic understanding of Python3, object-oriented programming, the markdown language and basics in HTML. In order to ensure quality, we test and debug new code before pushing it, and we run spell checkers before updating the Wiki (albeit we cannot guarantee that the writing is 100 percent correct, we do our best).

Add a module to River Architect [bookmark: addmod]

Overview

	Use Python templates

	Bind the new module to the GUI

	Full folder and file structure

New modules or code modifications should be pushed to the program repository https://github.com/RiverArchitect/program (read more about using git).

River Architect has currently five master tabs (or modules) and three of them have slave-tabs (sub-modules): Lifespan, Morphology, and Ecohydraulics. The development of a new module or sub-module follows the same standards and varies only in the way how the tab is finally bound in the River Architect master GUI. For creating a new (sub) module, do the following:

	Have a look at River Architect (see folder and file structure) and think about the capacities that the new module should have, and how it can be fitted in the existing framework (think twice before adding a new master tab).

	Clone the template repository: git clone https://github.com/RiverArchitect/development.git.

	Frome the cloned repository, copy the folder RiverArchitect/development/moduleTEMPLATE/ to RiverArchitect/moduleTEMPLATE/.

	Rename RiverArchitect/moduleTEMPLATE/ to RiverArchitect/NEW_MODULE_NAME/ (obviously, replace NEW_MODULE_NAME with the name of the new module).

	Edit and add the module files RiverArchitect/NEW_MODULE_NAME/cTEMPLATE.py and -- TEMPLATE_gui.py (see below descriptions of the module template).

	Bind the new module to the River Architect master GUI (see below descriptions for binding a new module to the River Architect master GUI).

Working with the module template [bookmark: template]

The River Architect development repository [https://github.com/RiverArchitect/development] provides template file for creating a new module in the moduleTEMPLATE/ directory:

	TEMPLATE_gui.py is a template of the actual GUI that will be shown in the new tab.

	cTEMPLATE.py is a template for writing new classes using geospatial analysis with arcpy.sa.

Inline comments guide through the scripts and their dependencies. Both scripts load all functions and load most of the required packages from RiverArchitect/.site_packages/riverpy/fGlobal.py.

Using TEMPLATE_gui.py [bookmark: templategui]

The script contains tkinter [https://effbot.org/tkinterbook/] classes to build the tab GUI. The first class is a PopUpWindow that may be useful for inquiring complex user input (e.g., calculate a value). A good example of using complex user input within River Architect is the River Builder input file creator.

class PopUpWindow(object):
 def __init__(self, master):
		...

The most relevant template class here is class MainGui(sg.RaModuleGui), which inherits the tab-slave class RaModuleGui from RiverArchitect/slave_gui.py. All tabs must inherit RiverArchitect/slave_gui.RaModuleGui, no matter if this will be a master or a slave tab. As such, all tabs inherit the following class variables (relevant variables only are listed here):

	self.condition is a STR of a condition contained in RiverArchitect/01_Conditions/

	self.features is a cDef.FeatureDefinitions() object resulting from RiverArchitect/LifespanDesign/.templates/threshold_values.xlsx (read more about features)

	self.reaches is a cDef.ReachDefinitions() object resulting from RiverArchitect/ModifyTerrain/.templates/computation_extents.xlsx (read more about river reaches)

	self.units is a STR variable, which is either us (US customary) or si (SI Metric)

	self.ww is an INT variable defining the tab window width

	self.wh is an INT variable defining the tab window height

	self.wx is an INT variable defining the tab window x-position

	self.wy is an INT variable defining the tab window y-position

	self.xd is an INT variable defining the x-pad (pixel space around tkinter objects)

	self.yd is an INT variable defining the y-pad (pixel space around tkinter objects)

Moreover, the RaModuleGui class automatically creates a "Units" and a "Close" dropdown menu.

The MainGui(sg.RaModuleGui) class header (__init__() function) looks like this:

class MainGui(sg.RaModuleGui):
 def __init__(self, from_master):
 sg.RaModuleGui.__init__(self, from_master)
 self.ww = 800 # window width
 self.wh = 840 # window height
 self.title = "TEMPLATE" # <---------------------- SET MODULE NAME HERE, BUT DO NOT CHANGE CLASS NAME
 self.set_geometry(self.ww, self.wh, self.title)
		# ... tkinter examples

We recommend modifying the __init__() function of new modules starting with the self.ww and self.wh variables, which define the tab window width and height in pixels, respectively (try to avoid values larger than 1000 pixels). Most important and required edits are:

	the file name (rename TEMPLATE_gui.py to something like new_module_gui.py), and

	the window title defined with the self.title variable (see above code snippet, where "TEMPLATE" should be renamed to something like "New Module").

Below self.title variable, the template provides some examples for using tkinter objects such as labels, listboxes with scroll bars, buttons, checkbuttons, and drop-down menus. For tkinter beginners, we recommend to carefully explore different tkinter objects (read more [https://effbot.org/tkinterbook/tkinter-index.htm#class-reference]).

The MainGui.run_calculation() function illustrates the implementation of a geospatial calculator class (see cTEMPLATE.py):

 def run_calculation(self):
 """
 Trigger a calculation with cTEMPLATE.TEMPLATE()
 """
 geo_calc_object = cTEMPLATE.TEMPLATE()

 # inquire input raster name
 dir2raster = askopenfilename(initialdir=".", title="Select input GeoTIFF raster",
 filetypes=[('GeoTIFF', '*.tif;*.tiff')])
 result = geo_calc_object.use_spatial_analyst_function(dir2raster)
 geo_calc_object.clear_cache() # remove temporary calculation files

 if not(result == -1):
 showinfo("SUCCESS", "The result raster %s has been created." % result)
 else:
 showinfo("ERROR", "Something went wrong. Check the logfile and River Architect Troubleshooting Wiki.")

geo_calc_object is a cTEMPLATE.TEMPLATE() object that is locally created in the run_calculation() function. It has a use_spatial_analyst_function that requires an input raster path to apply a (random) ArcGIS Spatial Analyst map algebra expression to that input raster. For this purpose, the MainGui.run_calculation() function asks the user to define an input raster using tkinters’s askopenfilename() function (imported from tkinter.filedialog). The line result = geo_calc_object.use_spatial_analyst_function(dir2raster) passes the selected raster file path (dir2raster) to the geospatial calculation function, which returns a string of the output raster if the calculation was successful (otherwise, it returns -1). After the calculation, an info window pops up (showinfo(WINDOW_NAME, MESSAGE) imported from tkinter.messagebox) and informs about the calculation success.

The MainGui.set_value() function illustrates the usage of the above mentioned PopUpWindow class (in the same file TEMPLATE_gui.py) to modify a value. The usage in the template is somewhat meaningless; a more reasonable value modification can be found in the Lifespan Design module where the user can modify the Manning’s n roughness value (see applicaton).

 def set_value(self):
 sub_frame = PopUpWindow(self.master)
 self.master.wait_window(sub_frame.top)
 value = float(sub_frame.value)
 showinfo("INFO", "You entered %s (whatever...)." % str(value))

The MainGui.set_value() function creates a sub-frame by instantiating a PopUpWindow object with MainGui as master. While the PopUpWindow is open, the main window waits for user input in the PopUpWindow (self.master.wait_window(sub_frame.top)). After closing the window, the function retrieves the user-defined value with value = float(sub_frame.value). Finally, an info window pops up (showinfo(WINDOW_NAME, MESSAGE) imported from tkinter.messagebox) and recalls the user-defined value (well, this is trivial here …).

Using cTEMPLATE.py [bookmark: templategui]

The cTEMPLATE.TEMPLATE() class provides a useful frame for programming geospatial calculations, but none of the template routines is obligatory (in contrast to the above GUI template. For using the template class, make the following adaptations to the code block:

class TEMPLATE:
 def __init__(self, *args, **kwargs):
 """
 ...
 """

 # Create a temporary cache folder for, e.g., geospatial analyses; use self.clear_cache() function to delete
 self.cache = os.path.dirname(__file__) + "\\.cache%s\\" % str(random.randint(10000, 99999))
 chk_dir(self.cache) # from fGlobal

 # Enable logger
 self.logger = logging.getLogger("logfile")

	rename the class from TEMPLATE to something meaningful;

	modify the input arguments of the __init__(self, *args, **kwargs) function.

The cTEMPLATE.TEMPLATE() class initiates a self.logger variable to write calculation progress to a logfile that is created as RiverArchitect/logfile.log when River Architect is called from the main GUI. This logefile should be used at every critical step where erroneous user input may yield wrong or no result. For example, if a user selects a raster file without valid data, the code should detect and tell the user about the problem using precise try-except statements. The cTEMPLATE.TEMPLATE.use_spatial_analyst_function(input_raster_path) function provides an example for the implementation of such behavior:
[bookmark: tryexcept]

	try:
		self.logger.info(" >> loading raster %s ..." % str(input_raster_path))
		in_ras = arcpy.Raster(input_raster_path)
	except:
		# go here if the input_raster_path is invalid and write a USEFUL error message
		self.logger.info("ERROR: Game over ... add this error message to RA_wiki/Troubleshooting")
		return -1	

In this exemplary code snippet, the command self.logger.info(" >> loading raster %s ..." % str(input_raster_path)) writes the raster input path to the console window and to the logfile using self.logger.info(). If the next step fails (i.e., arcpy.Raster() cannot load the provided input_raster_path as raster), the user should be informed. This information is passed recorded in the except: statement with self.logger.info("ERROR: Game over ... add this error message to RA_wiki/Troubleshooting"), which ends with returning -1 (exits the function because the raster is necessary for all other steps). It would be better to use more precise exception rules such as except ValueError:, but we kept the broad “shotgun” approach with except: only because we encountered unexpected exception types using arcpy. A better and future way of error message logging in River Architect will be to use self.logger.error() in the exception statement rather than self.logger.info(), which should exclusively be used to log calculation progress. Important is to add error messages, as well as warning messages, to the Troubleshooting Wiki (read more about extending the Wiki). Use warning messages when a function can still work even though a variable assignment error occurred such as when an optional, additional raster is missing.

Finally, every class should close with a call function, where only the TEMPLATE string should be adapted to the new class name:

 def __call__(self, *args, **kwargs):
 # Object call should return class name, file location and class attributes (dir)
 print("Class Info: <type> = TEMPLATE (%s)" % os.path.dirname(__file__))
 print(dir(self))

More features of the template are provided with the inline comments in cTEMPLATE.py.

Binding a new tab (module) to the River Architect master GUI [bookmark: bind]

New modules need to be bound to the master GUI, either as master-tab or as slave-tab. Both need to added to the RiverArchitect/master_gui.py script in the RA_gui class’s __init__() function.

Binding a New Module with or without submodules

Assuming a new master tab with the name *NEW MODULE, optionally with New Sub Modules, should to be added, which is located in RiverArchitect/NewModule/new_module_gui.py (or submodules in RiverArchitect/NewSubModule1/new_sub1_gui.py and RiverArchitect/NewSubModule2/new_sub2_gui.py, respectively), the following variables need to be complemented (attention: the list order is important - new modules should only be appended at the end of lists):

	self.tab_names = ['Get Started', 'Lifespan', 'Morphology', 'Ecohydraulics', 'Project Maker', 'NEW MODULE']

	For adding slave (sub) tabs with names NEW SUB1 and NEW SUB2:
+ self.sub_tab_parents = ['Lifespan', 'Morphology', 'Ecohydraulics', 'NEW MODULE']
+ self.sub_tab_names = [['Lifespan Design', 'Max Lifespan'], ['Modify Terrain', 'Volume Assessment'], ['Habitat Area (SHArC)', 'Stranding Risk'], ['NEW SUB1', 'NEW SUB2', ... and so on]]

	self.tab_dir_names
+ No sub tabs: self.tab_dir_names= ['\\GetStarted\\', ['\\LifespanDesign\\', '\\MaxLifespan\\'], ['\\ModifyTerrain\\', '\\VolumeAssessment\\'], ['\\SHArC\\', '\\StrandingRisk\\'], '\\ProjectMaker\\', '\\NewModule\\']
+ With sub tabs located in RiverArchitect/NewSubModule1/ and RiverArchitect/NewSubModule2/, respectively: self.tab_dir_names = ['\\GetStarted\\', ['\\LifespanDesign\\', '\\MaxLifespan\\'], ['\\ModifyTerrain\\', '\\VolumeAssessment\\'], ['\\SHArC\\', '\\StrandingRisk\\'], '\\ProjectMaker\\', ['\\NewSubModule1\\', '\\NewSubModule2\\']]

	self.tab_list
+ No sub tabs: self.tab_list= [GetStarted.welcome_gui.MainGui(self.tab_container), ttk.Notebook(self.tab_container), ttk.Notebook(self.tab_container), ttk.Notebook(self.tab_container), ProjectMaker.project_maker_gui.MainGui(self.tab_container), NewModule.new_module_gui.MainGui(self.tab_container)]
+ With sub tabs: self.tab_list= [GetStarted.welcome_gui.MainGui(self.tab_container), ttk.Notebook(self.tab_container), ttk.Notebook(self.tab_container), ttk.Notebook(self.tab_container), ProjectMaker.project_maker_gui.MainGui(self.tab_container), ttk.Notebook(self.tab_container)]

	With sub tabs: self.sub_tab_list = [[LifespanDesign.lifespan_design_gui.FaGui(self.tabs['Lifespan']), MaxLifespan.action_gui.ActionGui(self.tabs['Lifespan'])], [ModifyTerrain.modify_terrain_gui.MainGui(self.tabs['Morphology']), VolumeAssessment.volume_gui.MainGui(self.tabs['Morphology'])], [SHArC.sharc_gui.MainGui(self.tabs['Ecohydraulics']), StrandingRisk.connect_gui.MainGui(self.tabs['Ecohydraulics'])], [NewSubModule1.new_sub1_gui.MainGui(self.tabs['NEW SUB1']), NewSubModule2.new_sub2_gui.MainGui(self.tabs['NEW SUB2'])]]

Binding a New Sub-Module to an existing module

The following list indicates variables to be modified when a new sub-module (slave or sub-tab) is added to an existing module. The example assumes the creation of a sub-tab called RiverCreator to the Morphology module.

	Verify that the Morphology tab is mentioned in self.sub_tab_parents = ['Lifespan', 'Morphology', 'Ecohydraulics', 'NEW MODULE']

	Add RIVER CREATOR to the second nested list in self.sub_tab_names = [['Lifespan Design', 'Max Lifespan'], ['Modify Terrain', 'Volume Assessment', 'RIVER CREATOR'], ['Habitat Area (SHArC)', 'Stranding Risk']]; the second nested list must be chosen because Morphology is the second item in self.sub_tab_parents

	Assuming that the new module is located in RiverArchitect/RiverCreator, modify self.tab_dir_names = ['\\GetStarted\\', ['\\LifespanDesign\\', '\\MaxLifespan\\'], ['\\ModifyTerrain\\', '\\VolumeAssessment\\', '\\RiverCreator\\'], ['\\SHArC\\', '\\StrandingRisk\\'], '\\ProjectMaker\\', ['\\NewSubModule1\\', '\\NewSubModule2\\']]

	Withe the asumption that the new River Creator GUI is located in RiverArchitect/RiverCreator/rc_gui.py, modify self.sub_tab_list = [[LifespanDesign.lifespan_design_gui.FaGui(self.tabs['Lifespan']), MaxLifespan.action_gui.ActionGui(self.tabs['Lifespan'])], [ModifyTerrain.modify_terrain_gui.MainGui(self.tabs['Morphology']), VolumeAssessment.volume_gui.MainGui(self.tabs['Morphology']), RiverCreator.rc_gui.MainGui(self.tabs['River Creator'])], [SHArC.sharc_gui.MainGui(self.tabs['Ecohydraulics']), StrandingRisk.connect_gui.MainGui(self.tabs['Ecohydraulics'])]]

Please do not forget to update the wiki and test new code!

Full list of folders and files [bookmark: struc]

This is the full list of files and folders in the RiverArchitect/program repository. Please update after adding or deleting files. The file list can be generated (in Windows) with PowerShell: Enter Get-ChildItem -Path D:\path-to-local-copy-of-RiverArchitect\program -Recurse and copy-paste the comand line output.

RiverArchitect\program
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:38 AM .github
d----- 7/26/2019 11:39 AM .site_packages
d----- 7/26/2019 11:39 AM 00_Flows
d----- 7/26/2019 11:39 AM 01_Conditions
d----- 7/26/2019 11:39 AM 02_Maps
d----- 11/22/2019 10:17 AM StrandingRisk
d----- 7/26/2019 11:39 AM docs
d----- 11/19/2019 12:40 PM GetStarted
d----- 7/26/2019 11:39 AM LifespanDesign
d----- 7/26/2019 11:39 AM MaxLifespan
d----- 10/2/2019 9:57 AM ModifyTerrain
d----- 11/5/2019 1:57 PM ProjectMaker
d----- 10/2/2019 9:57 AM SHArC
d----- 11/25/2019 1:04 PM Tools
d----- 7/26/2019 11:39 AM VolumeAssessment
-a---- 11/13/2019 8:47 AM 22 .gitignore
-a---- 9/4/2019 5:04 PM 1540 LICENSE
-a---- 11/22/2019 10:17 AM 6458 master_gui.py
-a---- 7/26/2019 11:39 AM 5856 README.md
-a---- 11/4/2019 12:33 PM 11594 slave_gui.py
-a---- 7/26/2019 11:39 AM 619 Start_River_Architect.bat

RiverArchitect\program\.github
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:38 AM ISSUE_TEMPLATE

RiverArchitect\program\.github\ISSUE_TEMPLATE
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:38 AM 834 bug_report.md
-a---- 7/26/2019 11:38 AM 126 custom.md
-a---- 7/26/2019 11:38 AM 595 feature_request.md

RiverArchitect\program\.site_packages
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM openpyxl
d----- 11/19/2019 12:40 PM riverpy
d----- 7/26/2019 11:39 AM templates
-a---- 7/26/2019 11:38 AM 23 info.md

RiverArchitect\program\.site_packages\openpyxl
---- TRUNCATED ---- DEPRECATED MODULE BINDINGS

RiverArchitect\program\.site_packages\riverpy
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 7131 cDefinitions.py
-a---- 7/26/2019 11:39 AM 4141 cFeatures.py
-a---- 7/26/2019 11:39 AM 5840 cFish.py
-a---- 11/19/2019 12:40 PM 19563 cFlows.py
-a---- 7/26/2019 11:39 AM 12334 cInputOutput.py
-a---- 7/26/2019 11:39 AM 2550 cInterpolator.py
-a---- 7/26/2019 11:39 AM 2470 cLogger.py
-a---- 7/26/2019 11:39 AM 10583 cMakeTable.py
-a---- 11/18/2019 2:11 PM 23510 cMapper.py
-a---- 8/6/2019 8:03 AM 2899 config.py
-a---- 7/26/2019 11:39 AM 9290 cReachManager.py
-a---- 7/26/2019 11:39 AM 4245 cThresholdDirector.py
-a---- 9/17/2019 10:03 AM 21388 fGlobal.py
-a---- 7/26/2019 11:39 AM 120 __init__.py

RiverArchitect\program\.site_packages\templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 70862 code_icon.ico
-a---- 11/19/2019 11:35 AM 134 credits.txt
-a---- 7/26/2019 11:39 AM 6172 empty.xlsx
-a---- 7/26/2019 11:39 AM 34208 Fish.xlsx
-a---- 7/26/2019 11:39 AM 40751 morphological_units.xlsx
-a---- 7/26/2019 11:39 AM 164 oups.txt

RiverArchitect\program\00_Flows
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM InputFlowSeries
d----- 11/21/2019 6:10 PM templates
-a---- 7/26/2019 11:39 AM 38 info.md

RiverArchitect\program\00_Flows\InputFlowSeries
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 252121 flow_series_example_data.xlsx

RiverArchitect\program\00_Flows\templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 11/21/2019 6:10 PM 188246 disc_freq_template.xlsx
-a---- 7/26/2019 11:39 AM 205163 flow_duration_template.xlsx
-a---- 7/26/2019 11:39 AM 15163 flow_return_period_template.xlsx

RiverArchitect\program\01_Conditions
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM none
-a---- 7/26/2019 11:39 AM 13258925 20XX_sample.zip
-a---- 7/26/2019 11:39 AM 208 README.md

RiverArchitect\program\01_Conditions\none
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 111 info.txt
-a---- 7/26/2019 11:39 AM 60 __init__.py

RiverArchitect\program\02_Maps
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM templates

RiverArchitect\program\02_Maps\templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM Index
d----- 7/26/2019 11:39 AM legend
d----- 7/26/2019 11:39 AM rasters
d----- 7/29/2019 5:48 PM river_template.gdb
d----- 7/29/2019 5:48 PM scratch.gdb
d----- 7/26/2019 11:39 AM symbology
-a---- 7/26/2019 11:39 AM 475672 river_template.aprx
-a---- 7/26/2019 11:39 AM 4096 river_template.tbx

RiverArchitect\program\02_Maps\templates\Index
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM river_map_template
d----- 7/26/2019 11:39 AM river_template
d----- 7/26/2019 11:39 AM Thumbnail

RiverArchitect\program\02_Maps\templates\Index\river_map_template
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 75 log.txt
-a---- 7/26/2019 11:39 AM 20 segments.gen
-a---- 7/26/2019 11:39 AM 200 segments_2
-a---- 7/26/2019 11:39 AM 1509 _0.cfs

RiverArchitect\program\02_Maps\templates\Index\river_template
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 71 log.txt
-a---- 7/26/2019 11:39 AM 20 segments.gen
-a---- 7/26/2019 11:39 AM 2580 segments_12
-a---- 7/26/2019 11:39 AM 2075 segments_z
-a---- 7/26/2019 11:39 AM 977 _10.cfs
-a---- 7/26/2019 11:39 AM 6183 _m.cfs
-a---- 7/26/2019 11:39 AM 673 _n.cfs
-a---- 7/26/2019 11:39 AM 9 _n_1.del
-a---- 7/26/2019 11:39 AM 807 _o.cfs
-a---- 7/26/2019 11:39 AM 688 _p.cfs
-a---- 7/26/2019 11:39 AM 9 _p_1.del
-a---- 7/26/2019 11:39 AM 837 _q.cfs
-a---- 7/26/2019 11:39 AM 688 _r.cfs
-a---- 7/26/2019 11:39 AM 9 _r_1.del
-a---- 7/26/2019 11:39 AM 805 _s.cfs
-a---- 7/26/2019 11:39 AM 688 _t.cfs
-a---- 7/26/2019 11:39 AM 9 _t_1.del
-a---- 7/26/2019 11:39 AM 849 _u.cfs
-a---- 7/26/2019 11:39 AM 789 _v.cfs
-a---- 7/26/2019 11:39 AM 805 _w.cfs
-a---- 7/26/2019 11:39 AM 804 _x.cfs
-a---- 7/26/2019 11:39 AM 737 _y.cfs
-a---- 7/26/2019 11:39 AM 9 _y_1.del
-a---- 7/26/2019 11:39 AM 973 _z.cfs
-a---- 7/26/2019 11:39 AM 9 _z_1.del

RiverArchitect\program\02_Maps\templates\Index\Thumbnail
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 0 indx
-a---- 7/26/2019 11:39 AM 4208 layers.jpg
-a---- 7/26/2019 11:39 AM 5833 layers12.jpg
-a---- 7/26/2019 11:39 AM 5611 layers2.jpg
-a---- 7/26/2019 11:39 AM 6006 layers22.jpg
-a---- 7/26/2019 11:39 AM 5851 layers32.jpg
-a---- 7/26/2019 11:39 AM 4823 layers5.jpg
-a---- 7/26/2019 11:39 AM 5789 layers7.jpg
-a---- 7/26/2019 11:39 AM 4346 map.jpg

RiverArchitect\program\02_Maps\templates\legend
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 1120768 legend.ServerStyle
-a---- 7/26/2019 11:39 AM 1622016 legend.style

RiverArchitect\program\02_Maps\templates\rasters
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM ds_bio_s0
d----- 7/26/2019 11:39 AM ds_elj_dwc
d----- 7/26/2019 11:39 AM ds_finese_d15
d----- 7/26/2019 11:39 AM ds_finese_d85
d----- 7/26/2019 11:39 AM ds_sidec
d----- 7/26/2019 11:39 AM ds_sidech110
d----- 7/26/2019 11:39 AM ds_sym_d
d----- 7/26/2019 11:39 AM ds_widen
d----- 7/26/2019 11:39 AM lf_sym
-a---- 7/29/2019 5:48 PM 1400 ds_bio_s0.aux.xml
-a---- 7/29/2019 5:48 PM 1383 ds_elj_dwc.aux.xml
-a---- 7/29/2019 5:48 PM 1413 ds_finese_d15.aux.xml
-a---- 7/29/2019 5:48 PM 1387 ds_finese_d85.aux.xml
-a---- 7/29/2019 5:48 PM 1487 ds_sidec.aux.xml
-a---- 7/29/2019 5:48 PM 1407 ds_sidech110.aux.xml
-a---- 7/29/2019 5:48 PM 2335 ds_sym_D.aux.xml
-a---- 7/29/2019 5:48 PM 504 ds_widen.aux.xml
-a---- 7/26/2019 11:39 AM 1274552 layout_lf.xml
-a---- 7/29/2019 5:48 PM 2316 lf_sym.aux.xml

RiverArchitect\program\02_Maps\templates\rasters\ds_bio_s0
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 98486 w001001.adf
-a---- 7/26/2019 11:39 AM 428 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_elj_dwc
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 170 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 49286 w001001.adf
-a---- 7/26/2019 11:39 AM 236 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_finese_d15
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 170 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 98486 w001001.adf
-a---- 7/26/2019 11:39 AM 428 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_finese_d85
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 170 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 49286 w001001.adf
-a---- 7/26/2019 11:39 AM 236 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_sidec
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/29/2019 5:48 PM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 8 vat.adf
-a---- 7/26/2019 11:39 AM 1662 w001001.adf
-a---- 7/26/2019 11:39 AM 428 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_sidech110
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 49286 w001001.adf
-a---- 7/26/2019 11:39 AM 236 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_sym_d
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/29/2019 5:48 PM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 32886 w001001.adf
-a---- 7/26/2019 11:39 AM 172 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_widen
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 8 vat.adf
-a---- 7/26/2019 11:39 AM 98486 w001001.adf
-a---- 7/26/2019 11:39 AM 428 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\lf_sym
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/29/2019 5:48 PM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 98486 w001001.adf
-a---- 7/26/2019 11:39 AM 428 w001001x.adf

RiverArchitect\program\02_Maps\templates\river_template.gdb
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 110 a00000001.gdbindexes
-a---- 7/26/2019 11:39 AM 302 a00000001.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000001.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000001.TablesByName.atx
-a---- 7/26/2019 11:39 AM 2055 a00000002.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000002.gdbtablx
-a---- 7/26/2019 11:39 AM 42 a00000003.gdbindexes
-a---- 7/26/2019 11:39 AM 525 a00000003.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000003.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000004.CatItemsByPhysicalName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000004.CatItemsByType.atx
-a---- 7/26/2019 11:39 AM 4118 a00000004.FDO_UUID.atx
-a---- 7/26/2019 11:39 AM 310 a00000004.gdbindexes
-a---- 7/26/2019 11:39 AM 1712 a00000004.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000004.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000004.spx
-a---- 7/26/2019 11:39 AM 12310 a00000005.CatItemTypesByName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000005.CatItemTypesByParentTypeID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000005.CatItemTypesByUUID.atx
-a---- 7/26/2019 11:39 AM 296 a00000005.gdbindexes
-a---- 7/26/2019 11:39 AM 2074 a00000005.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000005.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByDestinationID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByOriginID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByType.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.FDO_UUID.atx
-a---- 7/26/2019 11:39 AM 318 a00000006.gdbindexes
-a---- 7/26/2019 11:39 AM 190 a00000006.gdbtable
-a---- 7/26/2019 11:39 AM 32 a00000006.gdbtablx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByBackwardLabel.atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.CatRelTypesByDestItemTypeID.atx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByForwardLabel.atx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.CatRelTypesByOriginItemTypeID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.CatRelTypesByUUID.atx
-a---- 7/26/2019 11:39 AM 602 a00000007.gdbindexes
-a---- 7/26/2019 11:39 AM 3479 a00000007.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000007.gdbtablx
-a---- 7/26/2019 11:39 AM 4 gdb
-a---- 7/26/2019 11:39 AM 400 timestamps

RiverArchitect\program\02_Maps\templates\scratch.gdb
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 110 a00000001.gdbindexes
-a---- 7/26/2019 11:39 AM 302 a00000001.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000001.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000001.TablesByName.atx
-a---- 7/26/2019 11:39 AM 2055 a00000002.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000002.gdbtablx
-a---- 7/26/2019 11:39 AM 42 a00000003.gdbindexes
-a---- 7/26/2019 11:39 AM 525 a00000003.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000003.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000004.CatItemsByPhysicalName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000004.CatItemsByType.atx
-a---- 7/26/2019 11:39 AM 4118 a00000004.FDO_UUID.atx
-a---- 7/26/2019 11:39 AM 310 a00000004.gdbindexes
-a---- 7/26/2019 11:39 AM 1712 a00000004.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000004.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000004.spx
-a---- 7/26/2019 11:39 AM 12310 a00000005.CatItemTypesByName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000005.CatItemTypesByParentTypeID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000005.CatItemTypesByUUID.atx
-a---- 7/26/2019 11:39 AM 296 a00000005.gdbindexes
-a---- 7/26/2019 11:39 AM 2074 a00000005.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000005.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByDestinationID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByOriginID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByType.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.FDO_UUID.atx
-a---- 7/26/2019 11:39 AM 318 a00000006.gdbindexes
-a---- 7/26/2019 11:39 AM 190 a00000006.gdbtable
-a---- 7/26/2019 11:39 AM 32 a00000006.gdbtablx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByBackwardLabel.atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.CatRelTypesByDestItemTypeID.atx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByForwardLabel.atx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.CatRelTypesByOriginItemTypeID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.CatRelTypesByUUID.atx
-a---- 7/26/2019 11:39 AM 602 a00000007.gdbindexes
-a---- 7/26/2019 11:39 AM 3479 a00000007.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000007.gdbtablx
-a---- 7/26/2019 11:39 AM 4 gdb
-a---- 7/26/2019 11:39 AM 400 timestamps

RiverArchitect\program\02_Maps\templates\symbology
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 7666 LifespanRasterSymbology.lyrx

RiverArchitect\program\StrandingRisk
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 8/20/2019 12:22 PM .templates
-a---- 11/21/2019 6:10 PM 28031 cConnectivityAnalysis.py
-a---- 11/22/2019 10:17 AM 16505 cGraph.py
-a---- 11/19/2019 12:40 PM 12408 connect_gui.py
-a---- 11/19/2019 12:40 PM 4199 cRatingCurves.py
-a---- 7/26/2019 11:39 AM 84 __init__.py

RiverArchitect\program\StrandingRisk\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 8/20/2019 12:22 PM 191729 disconnected_area_template.xlsx

RiverArchitect\program\docs
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 3358 CODE_OF_CONDUCT.md
-a---- 7/26/2019 11:39 AM 7504 CONTRIBUTING.md
-a---- 7/26/2019 11:39 AM 802 PULL_REQUEST_TEMPLATE.md

RiverArchitect\program\GetStarted
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
-a---- 11/19/2019 12:40 PM 18968 cConditionCreator.py
-a---- 7/26/2019 11:39 AM 7321 cDetrendedDEM.py
-a---- 7/26/2019 11:39 AM 4387 cMakeInp.py
-a---- 7/26/2019 11:39 AM 8722 cMorphUnits.py
-a---- 8/20/2019 12:22 PM 19556 cWaterLevel.py
-a---- 7/26/2019 11:39 AM 3542 fSubCondition.py
-a---- 10/30/2019 4:27 PM 4851 popup_align_rasters.py
-a---- 11/4/2019 10:43 AM 10762 popup_analyze_q.py
-a---- 10/30/2019 4:27 PM 18197 popup_create_c.py
-a---- 9/17/2019 10:19 AM 7493 popup_create_c_sub.py
-a---- 7/26/2019 11:39 AM 4329 popup_make_inp.py
-a---- 9/17/2019 10:19 AM 13449 popup_populate_c.py
-a---- 10/30/2019 4:27 PM 6226 welcome_gui.py
-a---- 7/26/2019 11:39 AM 80 __init__.py

RiverArchitect\program\GetStarted\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 143253 welcome.gif

RiverArchitect\program\LifespanDesign
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 11/25/2019 6:43 PM .templates
d----- 7/26/2019 11:39 AM Output
-a---- 10/24/2019 2:47 PM 53673 cLifespanDesignAnalysis.py
-a---- 10/29/2019 6:17 PM 10816 cParameters.py
-a---- 7/26/2019 11:39 AM 5776 cReadInpLifespan.py
-a---- 10/23/2019 3:48 PM 16584 feature_analysis.py
-a---- 11/25/2019 4:10 PM 21688 lifespan_design_gui.py
-a---- 7/26/2019 11:39 AM 113 __init__.py

RiverArchitect\program\LifespanDesign\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 703 mapping.inp
-a---- 7/26/2019 11:39 AM 773 mapping_full.inp
-a---- 7/26/2019 11:39 AM 11323 prepare_map_coordinates.xlsx
-a---- 11/25/2019 4:10 PM 23190 threshold_values.xlsx

RiverArchitect\program\LifespanDesign\Output
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM Rasters

RiverArchitect\program\LifespanDesign\Output\Rasters
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 58 __init__.py

RiverArchitect\program\MaxLifespan
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
d----- 7/26/2019 11:39 AM Output
-a---- 11/25/2019 4:11 PM 14301 action_gui.py
-a---- 7/26/2019 11:39 AM 2934 action_planner.py
-a---- 7/26/2019 10:50 AM 11193 cActionAssessment.py
-a---- 7/26/2019 11:39 AM 3558 cFeatureActions.py
-a---- 7/26/2019 11:39 AM 102 __init__.py

RiverArchitect\program\MaxLifespan\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM rasters
-a---- 7/26/2019 11:39 AM 704 mapping.inp
-a---- 7/26/2019 11:39 AM 11323 prepare_map_coordinates.xlsx

RiverArchitect\program\MaxLifespan\.templates\rasters
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 91 zeros.tfw
-a---- 7/26/2019 11:39 AM 9445 zeros.tif
-a---- 7/26/2019 11:39 AM 364 zeros.tif.aux.xml

RiverArchitect\program\MaxLifespan\Output
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM Rasters

RiverArchitect\program\MaxLifespan\Output\Rasters
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\ModifyTerrain
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
d----- 7/26/2019 11:39 AM Output
d----- 7/26/2019 11:39 AM RiverBuilder
-a---- 7/26/2019 10:39 AM 12435 cModifyTerrain.py
-a---- 7/26/2019 11:39 AM 1941 cRiverBuilder.py
-a---- 7/26/2019 11:39 AM 12125 cRiverBuilderConstruct.py
-a---- 8/6/2019 8:03 AM 13861 modify_terrain_gui.py
-a---- 7/26/2019 11:39 AM 3777 riverbuilder_input_example.txt
-a---- 9/17/2019 10:27 AM 15650 sub_gui_rb.py
-a---- 7/26/2019 11:39 AM 87 __init__.py

RiverArchitect\program\ModifyTerrain\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 382805 chnl_xs_parameters.gif
-a---- 7/26/2019 11:39 AM 10681 computation_extents.xlsx
-a---- 7/26/2019 11:39 AM 1024000 determine_extents.mxd
-a---- 7/26/2019 11:39 AM 593 determine_extents.xml
-a---- 7/26/2019 11:39 AM 704 mapping.inp
-a---- 7/26/2019 11:39 AM 11323 prepare_map_coordinates.xlsx

RiverArchitect\program\ModifyTerrain\Output
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM Grade
d----- 7/26/2019 11:39 AM RiverBuilder
d----- 7/26/2019 11:39 AM Widen

RiverArchitect\program\ModifyTerrain\Output\Grade
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\ModifyTerrain\Output\RiverBuilder
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\ModifyTerrain\Output\Widen
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\ModifyTerrain\RiverBuilder
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM messages
-a---- 7/26/2019 11:39 AM 45428 riverbuilder.r
-a---- 7/26/2019 11:39 AM 3117 RiverBuilderRenderer.py

RiverArchitect\program\ModifyTerrain\RiverBuilder\messages
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 537 chnl_xs_pts.txt
-a---- 7/26/2019 11:39 AM 391 d50.txt
-a---- 7/26/2019 11:39 AM 730 datum.txt
-a---- 7/26/2019 11:39 AM 81 dy.txt
-a---- 7/26/2019 11:39 AM 292 floodplain_outer_height.txt
-a---- 7/26/2019 11:39 AM 270 h_bf.txt
-a---- 7/26/2019 11:39 AM 381 length.txt
-a---- 7/26/2019 11:39 AM 935 sub_curvature.txt
-a---- 7/26/2019 11:39 AM 285 sub_floodplain_l.txt
-a---- 7/26/2019 11:39 AM 150 sub_floodplain_r.txt
-a---- 7/26/2019 11:39 AM 568 sub_meander.txt
-a---- 7/26/2019 11:39 AM 149 sub_thalweg.txt
-a---- 7/26/2019 11:39 AM 667 sub_w_bf.txt
-a---- 7/26/2019 11:39 AM 204 s_valley.txt
-a---- 7/26/2019 11:39 AM 572 taux.txt
-a---- 7/26/2019 11:39 AM 300 terrace_outer_height.txt
-a---- 7/26/2019 11:39 AM 1391 user_functions.txt
-a---- 7/26/2019 11:39 AM 150 w_bf.txt
-a---- 7/26/2019 11:39 AM 431 w_bf_min.txt
-a---- 7/26/2019 11:39 AM 343 w_boundary.txt
-a---- 7/26/2019 11:39 AM 831 w_floodplain.txt
-a---- 7/26/2019 11:39 AM 419 w_terrace.txt
-a---- 7/26/2019 11:39 AM 585 xs_shape.txt
-a---- 7/26/2019 11:39 AM 553 x_res.txt

RiverArchitect\program\ProjectMaker
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/29/2019 5:48 PM .templates
-a---- 10/2/2019 9:57 AM 10092 cSHArC.py
-a---- 7/26/2019 11:39 AM 4245 fFunctions.py
-a---- 11/25/2019 4:13 PM 34810 project_maker_gui.py
-a---- 11/19/2019 9:32 AM 11784 s20_plantings_delineation.py
-a---- 11/19/2019 9:43 AM 8778 s21_plantings_stabilization.py
-a---- 10/24/2019 2:19 PM 11928 s30_terrain_stabilization.py
-a---- 11/12/2019 2:21 PM 8488 s40_compare_sharea.py
-a---- 7/26/2019 11:39 AM 217 __init__.py

RiverArchitect\program\ProjectMaker\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 11/25/2019 4:08 PM Project_vii_TEMPLATE
-a---- 7/26/2019 11:39 AM 5 area_dummy.cpg
-a---- 7/26/2019 11:39 AM 118 area_dummy.dbf
-a---- 7/26/2019 11:39 AM 132 area_dummy.sbn
-a---- 7/26/2019 11:39 AM 116 area_dummy.sbx
-a---- 7/26/2019 11:39 AM 220 area_dummy.shp
-a---- 7/26/2019 11:39 AM 108 area_dummy.shx

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 11/19/2019 10:27 AM Geodata
d----- 7/26/2019 11:39 AM Index
d----- 10/30/2019 5:57 PM ProjectMaps.gdb
d----- 11/19/2019 9:41 AM Quantities
-a---- 11/7/2019 5:51 PM 203109 ProjectMaps.aprx
-a---- 4/26/2019 9:43 AM 4096 ProjectMaps.tbx
-a---- 11/25/2019 4:07 PM 35894 Project_assessment_vii.xlsx

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Geodata
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 11/19/2019 9:12 AM Rasters
d----- 11/19/2019 9:12 AM Shapefiles
-a---- 7/26/2019 11:39 AM 20814 SHArea_evaluation_template_si.xlsx
-a---- 7/26/2019 11:39 AM 20797 SHArea_evaluation_template_us.xlsx

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Geodata\Rasters
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 11/19/2019 9:12 AM 10 __init__.py

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Geodata\Shapefiles
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 11/19/2019 9:12 AM 10 __init__.py

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Index
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 11/5/2019 1:57 PM ProjectMaps
d----- 7/26/2019 11:39 AM Thumbnail

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Index\ProjectMaps
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 4/26/2019 10:18 AM 20 segments.gen
-a---- 4/26/2019 10:18 AM 1067 segments_9
-a---- 4/26/2019 9:43 AM 1122 _1.cfs
-a---- 4/26/2019 9:43 AM 633 _2.cfs
-a---- 4/26/2019 10:17 AM 669 _3.cfs
-a---- 4/26/2019 10:18 AM 9 _3_1.del
-a---- 4/26/2019 10:17 AM 812 _4.cfs
-a---- 4/26/2019 10:18 AM 708 _5.cfs
-a---- 4/26/2019 10:18 AM 9 _5_1.del
-a---- 4/26/2019 10:18 AM 806 _6.cfs

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Index\Thumbnail
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 4/26/2019 10:17 AM 0 indx
-a---- 4/26/2019 10:18 AM 1827 layers.jpg

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\ProjectMaps.gdb
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 4/26/2019 9:43 AM 110 a00000001.gdbindexes
-a---- 10/25/2019 8:54 AM 338 a00000001.gdbtable
-a---- 10/25/2019 8:54 AM 5152 a00000001.gdbtablx
-a---- 10/25/2019 8:54 AM 4118 a00000001.TablesByName.atx
-a---- 4/26/2019 9:43 AM 2055 a00000002.gdbtable
-a---- 4/26/2019 9:43 AM 5152 a00000002.gdbtablx
-a---- 4/26/2019 9:43 AM 42 a00000003.gdbindexes
-a---- 4/26/2019 9:43 AM 525 a00000003.gdbtable
-a---- 4/26/2019 9:43 AM 5152 a00000003.gdbtablx
-a---- 10/25/2019 8:54 AM 4118 a00000004.CatItemsByPhysicalName.atx
-a---- 10/25/2019 8:54 AM 4118 a00000004.CatItemsByType.atx
-a---- 10/25/2019 8:54 AM 4118 a00000004.FDO_UUID.atx
-a---- 10/25/2019 8:54 AM 8536 a00000004.freelist
-a---- 4/26/2019 9:43 AM 310 a00000004.gdbindexes
-a---- 10/25/2019 8:54 AM 24787 a00000004.gdbtable
-a---- 10/25/2019 8:54 AM 5152 a00000004.gdbtablx
-a---- 10/25/2019 8:54 AM 4118 a00000004.spx
-a---- 4/26/2019 9:43 AM 12310 a00000005.CatItemTypesByName.atx
-a---- 4/26/2019 9:43 AM 4118 a00000005.CatItemTypesByParentTypeID.atx
-a---- 4/26/2019 9:43 AM 4118 a00000005.CatItemTypesByUUID.atx
-a---- 4/26/2019 9:43 AM 296 a00000005.gdbindexes
-a---- 4/26/2019 9:43 AM 2074 a00000005.gdbtable
-a---- 4/26/2019 9:43 AM 5152 a00000005.gdbtablx
-a---- 10/25/2019 8:54 AM 4118 a00000006.CatRelsByDestinationID.atx
-a---- 10/25/2019 8:54 AM 4118 a00000006.CatRelsByOriginID.atx
-a---- 10/25/2019 8:54 AM 4118 a00000006.CatRelsByType.atx
-a---- 10/25/2019 8:54 AM 4118 a00000006.FDO_UUID.atx
-a---- 4/26/2019 9:43 AM 318 a00000006.gdbindexes
-a---- 10/25/2019 8:54 AM 263 a00000006.gdbtable
-a---- 10/25/2019 8:54 AM 5152 a00000006.gdbtablx
-a---- 4/26/2019 9:43 AM 12310 a00000007.CatRelTypesByBackwardLabel.atx
-a---- 4/26/2019 9:43 AM 4118 a00000007.CatRelTypesByDestItemTypeID.atx
-a---- 4/26/2019 9:43 AM 12310 a00000007.CatRelTypesByForwardLabel.atx
-a---- 4/26/2019 9:43 AM 12310 a00000007.CatRelTypesByName.atx
-a---- 4/26/2019 9:43 AM 4118 a00000007.CatRelTypesByOriginItemTypeID.atx
-a---- 4/26/2019 9:43 AM 4118 a00000007.CatRelTypesByUUID.atx
-a---- 4/26/2019 9:43 AM 602 a00000007.gdbindexes
-a---- 4/26/2019 9:43 AM 3479 a00000007.gdbtable
-a---- 4/26/2019 9:43 AM 5152 a00000007.gdbtablx
-a---- 10/25/2019 8:54 AM 66 a00000009.gdbindexes
-a---- 10/25/2019 8:54 AM 168 a00000009.gdbtable
-a---- 10/25/2019 8:54 AM 5152 a00000009.gdbtablx
-a---- 4/26/2019 9:43 AM 4 gdb
-a---- 10/25/2019 8:54 AM 400 timestamps

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Quantities
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 11/19/2019 9:12 AM 10 __init__.py

RiverArchitect\program\SHArC
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
d----- 7/26/2019 11:39 AM CHSI
d----- 7/26/2019 11:39 AM HSI
d----- 7/26/2019 11:39 AM SHArea
-a---- 11/21/2019 6:14 PM 38809 cHSI.py
-a---- 10/22/2019 2:31 PM 32273 sharc_gui.py
-a---- 7/26/2019 11:12 AM 17490 sub_gui_covhsi.py
-a---- 10/30/2019 5:10 PM 9689 sub_gui_hhsi.py
-a---- 7/26/2019 11:39 AM 122 __init__.py

RiverArchitect\program\SHArC\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 242416 CONDITION_QvsA_template_si.xlsx
-a---- 7/26/2019 11:39 AM 242653 CONDITION_QvsA_template_us.xlsx
-a---- 7/26/2019 11:39 AM 17940 CONDITION_sharea_template_si.xlsx
-a---- 7/26/2019 11:39 AM 17923 CONDITION_sharea_template_us.xlsx
-a---- 7/26/2019 11:39 AM 6172 empty.xlsx

RiverArchitect\program\SHArC\CHSI
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\SHArC\HSI
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\SHArC\SHArea
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\Tools
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
-a---- 11/25/2019 1:05 PM 6547 cHydraulic.py
-a---- 7/26/2019 11:39 AM 8790 cInputOutput.py
-a---- 11/25/2019 1:05 PM 6126 cPoolRiffle.py
-a---- 11/25/2019 1:05 PM 8129 fTools.py
-a---- 11/25/2019 1:05 PM 3112 make_annual_flow_duration.py
-a---- 11/25/2019 1:05 PM 1687 make_annual_peak.py
-a---- 7/26/2019 11:39 AM 1554 morphology_designer.py
-a---- 10/30/2019 12:49 PM 1218 rename_files.py
-a---- 7/26/2019 11:39 AM 137 run_make_annual_flow_duration.bat
-a---- 7/26/2019 11:39 AM 132 run_make_d2w.bat
-a---- 7/26/2019 11:39 AM 124 run_make_det.bat
-a---- 7/26/2019 11:39 AM 124 run_make_det_gen.bat
-a---- 7/26/2019 11:39 AM 126 run_make_mu.bat
-a---- 7/26/2019 11:39 AM 147 run_morphology_designer.bat

RiverArchitect\program\Tools\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 11618 annual_peak_template.xlsx
-a---- 7/26/2019 11:39 AM 20867 flow_duration_template.xlsx
-a---- 7/26/2019 11:39 AM 11763 input.xlsx
-a---- 7/26/2019 11:39 AM 13784 output.xlsx

RiverArchitect\program\VolumeAssessment
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
d----- 7/26/2019 11:39 AM Output
-a---- 11/21/2019 6:07 PM 10217 cVolumeAssessment.py
-a---- 7/26/2019 11:35 AM 7013 volume_gui.py
-a---- 7/26/2019 11:39 AM 79 __init__.py

RiverArchitect\program\VolumeAssessment\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 10125 volumes_template.xlsx

RiverArchitect\program\VolumeAssessment\Output
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

 Index

Index

 Disclaimer and License

Disclaimer and License

DISCLAIMER

No warranty is expressed or implied regarding the usefulness or completeness of the information provided by River Architect and its documentation (wiki). References to commercial products do not imply endorsement by the Authors of River Architect. The concepts, materials, and methods used in the algorithms and described in the wiki are for informational purposes only. The Authors have made substantial effort to ensure the accuracy of the algorithms and the wiki, but science of prediction is uncertain and the Authors shall not be held liable, nor their employers or funding sponsors, for calculations and/or decisions made on the basis of application of River Architect. The information is provided “as is” and anyone who chooses to use the information is responsible for her or his own choices as to what to do with the data and the individual is responsible for the results the follow from their decisions.

BSD 3-Clause License

Copyright (c) 2021, the River Architect Developer Team and all other the Authors of RiverArchitect.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 River Architect Wiki

River Architect Wiki

 Table of Contents

 	Installation

 	Install, update and launch River Architect

 	Program file structure

 	Requirements

 	Logfiles

 	Get started, terminology and signposts

 	Welcome and Condition creation

 	Create Conditions

 	Analyze Flows

 	Input definition files

 	Map extent definition files

 	Geofile conventions

 	Prepare input Rasters

 	Modules

 	Lifespans
 	
 	The Lifespan Design module maps sustainable features

 	Parameter hypothesis

 	River design and restoration features

 	Input definition files

 	Code extension and modification

 	The MaxLifespan module identifies best-performing features

 	Quick GUIde

 	Working principles

 	Code extension and modification

 	Morphology (Terraforming)

 	River Reach definitions

 	Modify Terrain

 	Quick GUIde

 	Threshold-based Grading or Widening (Broaden)

 	River Builder

 	Working principle

 	Code extension and modification

 	Volume Assessment

 	Quick GUIde

 	Working principle

 	Set level of detection

 	Ecohydraulics

 	Assess habitat area with the SHArC module

 	Quick GUIde

 	Define Physical Habitats for Fish

 	SHArea calculation

 	Working principles

 	Predefined Fish (Physical Habitats)

 	Edit Fish (Physical Habitats) template

 	Stranding Risk

 	Introduction

 	Quick GUIde

 	The Projekt Maker module generates cost-benefit plans and tables of river designs

 	Quick GUIde

 	Cost quantity assessment

 	Ecological (habitat) benefit assessment (Calculate SHArea)

 	Tools contain beta-version routines (under development)

 	FAQ

 	Troubleshooting and Error message handling

 	Known issues

 	How to troubleshoot

 	Error messages

 	Warning messages

Please refer to the installation guide for first-time installation, update, and launch assistance.

River Architect is an open-access, peer-reviewed (Journal SoftwareX) [https://doi.org/10.1016/j.softx.2020.100438] and Python3-based software for the GIS-based planning of habitat enhancing river design features regarding their lifespans, parametric characteristics, optimum placement in the terrain, and ecological benefits. The main graphical user interface (GUI) provides modules for generating lifespan and design maps, terrain modification (terraforming), assessment of digital elevation models (DEM), habitat assets including fish stranding risk, and project cost-benefits.

River Architect invites to analyses and modifications of the longevity and ecological quality of riverscapes. Different planning bases (“conditions”) can be easily created using an introductory module called GetStarted. Lifespan, Morphology (Terraforming) and Ecohydraulic assessments can then be created based on the Conditions, including the creation of project plans and cost tables with a Project Maker module.

Lifespan maps indicate the expected longevity of restoration features as a function of terrain change, morphological characteristics, and 2D hydrodynamic modeling results. Design maps are a side product of lifespan and design mapping and indicate required feature dimensions for stability, such as the minimum required size of angular boulders to avoid their mobilization during floods (more information in Schwindt et al.2019 [https://www.sciencedirect.com/science/article/pii/S0301479718312751]). Best lifespan maps result from the comparison of lifespan and design maps of multiple restoration features and assign features with the highest longevity to each pixel of a raster. Thus, the Max Lifespan module assess optimum features as a function of highest lifespans among comparable feature groups such as terraforming or vegetation planting species.

Morphology (Terraforming) includes routines to Modify Terrain for river restoration purposes. Currently, two terrain modification algorithms are implemented: (1) Threshold value-based terrain modifications in terms of grading or widening / broaden rivers for riparian forest establishment; and (2) River Builder for the creation of synthetic river valley. A Volume Assessment module can compare an original (pre-project or pre-terraforming application) and a modified DEM (“with implementation” or post-feature application) to determine required earth movement (terraforming volumes) works.

Ecohydraulics assessments include the evaluation of the ecohydraulic state and connectivity of riverscapes. The Habitat Area (Seasonal Habitat Area Calculator) module applies user-defined flows (discharges) for the spatial evaluation of the habitat suitability index (HSI) in terms of Seasonal Habitat Area (SHArea). The hydraulic habitat suitability results from 2D hydrodynamic numerical model outputs of flow depth and velocity. Also, a “cover” option can be used to assess ecohydraulic effects of cobble, boulder, vegetation, and streamwood. The Stranding Risk module provides insights into the connection of wetted areas on floodplains and how these may be improved to enhance the survivorship of fry / juvenile fish.

The Project Maker module creates preliminary construction plans and evaluates the costs for gain in usable habitat for target fish species and lifestages. A unit cost workbook provides relevant costs and the gain in usable habitat area results from the SHArC module.

A set of Tools provides Python console scripts that are under development and will be implemented in future versions of the River Architect GUI.

River Architect represents a comprehensive tool for state-of-the-art planning of ecologic river modifications. The integrated application of River Architect to habitat enhancing project planning is illustrated in the following flowchart.
The modules and tool-scripts can also be individually applied for other purposes than suggested in the flowchart.

[image: flowchart]

The procedure of project design following the flowchart involves the following steps:

	Generate a terrain elevation model (DEM).

	Determine relevant discharges for 2D hydrodynamic modeling:

	At least three annual discharges describing the “most of the time” - situation of the considered river for habitat evaluation assessments. River Architect’s Tools contain scripts for generating flow duration curves from gaging station data.

	At least three flood discharges against which potential restoration features have to withstand (determine lifespan intersects).

	Run a 2D hydrodynamic model (steady) with all determined discharges to generate hydraulic snap-shots of the river.

	Create a Condition using the GetStarted module. The Condition should include GeoTIFFs of the initial (existing or pre-project) river state:

	Detrended digital elevation model (DEM);

	Flow depth and velocity for multiple discharges Rasters from 2D hydrodynamic modeling (see Signposts);

	Substrate map (dmean for metric or dmean_ft for U.S. customary units); relevant methods are described in Detert et al. (2018) [http://www.sciencedirect.com/science/article/pii/S1001627918300350]; Stähly et al. (2017) [https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HY.1943-7900.0001286]; and [Jackson et al. (2013)];

	Datasets that can be used to assess design feature stability, such as side channel design criteria;

	Topographic change Rasters (Topographic Change Detection or DEM differencing according to Wyrick and Pasternack 2016 [https://onlinelibrary.wiley.com/doi/full/10.1002/esp.3854]);

	Depth to water table Raster (d2w);

	Morphological unit Raster (see Wyrick and Pasternack (2014) [http://www.sciencedirect.com/science/article/pii/S0169555X14000099]).

	Apply the LifespanDesign module to framework (terraforming) features.

	Lifespan and Design maps, as well as expert assessment, serve for the identification of relevant framework (terraforming) features.

	Iterative terraforming (if relevant):

	Use the ModifyTerrain module for creating synthetic river valley with River Builder; or apply threshold value-based terrain grading or broadening of the river bed. Please note that both routines require post-processing with computer-aided design (translation into real-world coordinates and/or edge smoothing).

	Re-compile the flow depth and velocity maps (re-run 2D model) with the modified DEM.

	Verify the suitability of the modified DEM (e.g., barrier height to ensure flood safety and habitat suitability with the SHArC module); if the verification show weaknesses adapt the terraforming and re-compile the flow depth and velocity maps until terraforming is satisfactory.

	Use the VolumeAssessment module (Morphology tab) to compare pre- (initial) and post-project (modified) DEMs for determining required excavation and fill volumes.

	Apply the LifespanDesign module to vegetation plantings and (other) bioengineering features based on the terraformed DEM (or the original / initial DEM if no terraforming applies).

	Use the MaxLifespan module to identify best performing (highest lifespan) vegetation plantings and (other) bioengineering features.

	If the soils are too coarse (i.e., the capillarity is not high enough to enable plant root growth), apply the connectivity feature “incorporate fine sediment in soils”.

	If gravel augmentation methods are applicable: Consecutively apply the LifespanDesign and MaxLifespan modules to connectivity features to foster self-sustaining, artificially created ecomorphological patterns within the terraforming process.

If gravel is added in-stream, re-run the numerical model for the assessment of gravel stability with the LifespanDesign module and the combined habitat suitability with the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module to compare the Seasonal Habitat Area (SHArea) before and after enhancement of Physical Habitats for target fish species (lifestages).

	Use the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] to assess the “existing” (pre-project) and “with implementation” (post-project) habitat suitability in terms of annually usable habitat area (SHArea).

	Use the ProjectMaker to calculate costs, the net gain in SHArea, and their ratio as a metric defining the project trade-off.

The working principles of the LifespanDesign, MaxLifespan, ModifyTerrain, VolumeAssessment, SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC], and ProjectMaker [https://github.com/RiverArchitect/RA_wiki/ProjectMaker] modules are explained on their own Wiki pages. The differentiation between terraforming (framework), vegetation plantings and other bioengineering, and connectivity features is described within the LifespanDesign Wiki. The Installation Wiki pages describe the propper installation, file organization and environment of River Architect.

 <no title>

 River Architect was developed in the Pasternack Lab for Watershed Hydrology, Geomorphology, and Ecohydraulics [http://pasternack.ucdavis.edu/] at University of California at Davis, Department of Land, Air, and Water Resources.

River Architect is the result of research projects funded by

	The Yuba Water Agency [https://www.yubawater.org/] (Marysville, California, USA) under Award #201016094 and Award #10446)

	The USDA National Institute of Food and Agriculture [https://nifa.usda.gov/], Hatch project number CA-D-LAW-7034-H.

The scientific procedures integrated into River Architect are the result of a dedicated development team and many researchers who contributed useful hints. Therefore, special thanks goes to Lukas Schmocker, Isabella Schalko, Virginia Ruiz-Villanueva, Carmelo Juez, Fabian Friedl and John Stella for their inputs regarding wood introduction, side cavity dynamics, sediment replenishment and riparian vegetation plantings in riverine environments.

 The to-do list for developers

The to-do list for developers

To edit this list, please clone the Wiki (see descriptions) and follow the Wiki writing instructions. More issues regarding the application of River Architect are listed in the Troubslehooting Wiki. Please update this Known issues list for users, too, once a problem is fixed.

Minor future tasks (max. one day of work each) [bookmark: min]

	General

	Change Error and Warning message logging from logger.info() to logger.error() and logger.warning() statements.

	Lifespan

	Mapping (PDF export) of lifespan maps does not work in many cases for several potential reasons: Definition of zoonm coordinates, automated layout selection, and visibility of layers (issues located in code lines 220 to 225 of /.site_packages/riverpy/cMapper.py). Sometimes it works anyway. Because PDF export is not a core function of River Architect, the PDF export problem had a low priority in the development, but should be fixed in the future.

	Project Maker

	Project Maker places plant species in alphabeticaly order when several plant species have the same maximum lifespan at a pixel. However, users should have the option to define the order in which plant species are placed. A drop-down menu or pop-up window call (button?) in the Project Maker GUI (ProjectMaker/project_maker_gui.py, somewhere between row=9 and row=13) should be implemented to enable the user selection. Moreover, an adaptation will be required in ProjectMaker/s20_plantings_delineation.py between lines 96 to 158 (approximately); currently, the automated hierarchical order is enforced by storing pixels, which are already assigned to a plant species, in an arcpy.Raster() instance called occupied_px_ras (first instantiation is str()). occupied_px_ras is overwritten (updated) in every loop between lines 115 and 120 (approximately).

Major future tasks for River Architect development [bookmark: maj]

	Add a Load User Settings options (see below)

	Resolve arcpy dependencies (move to QGIS and gdal [https://gdal.org])

	Update and test River Builder implementation

	Couple with 2D numerical models

	Metadata:

	Enable to append project metadata (including baseline, budget, socio-economic context and stakeholder)

	Integrate metadata output in common formats (primary: Ecological Metadata Language - EML [http://www.dcc.ac.uk/resources/metadata-standards/eml-ecological-metadata-language] format)

User requests and issues [bookmark: usr]

Bugs or development requests from user undergo the following steps: (1) Reception (“Received”), (2) “Discussion” of implementation (developers and users), (3) “Implementation”(developers), and (4) push changes (final state: “Implemented”). The following issues and requests were reported by users:

	Description
	Source
	Implementation progress

	Turn threshold values of features into threshold functions
	J. W.
	Received

DETAILED PROBLEM DESCRIPTIONS

User settings [bookmark: usrstgs]

A user settings load function may use a text file to enable the following user definitions (provided by sierrajphillips [https://github.com/sierrajphillips]):

Lifespan Design

	Note if wildcard raster and/or habitat matching was applied

	Record Manning’s n that user input

	Note if computation extent was limited to boundary.tif

Max Lifespan

	Record if lifespan raster extent or an extent raster was used

SHArC

	Record if calculation boundary shapefile was used

	Record which HSI combination method was used: geometric or product

	Record what SHArea threshold user input (CHSI = ?)

	For Q - Area Analysis - which flow duration curve was used?

Stranding Risk

	Record what Q-high and Q_low input by user

	Record which interpolation method was selected

Project Maker

	Record the three user inputs for lifespan (years)

	Record stability drivers set by user (Manning’s n and Shields parameter)

 Using git

Using git

For developing River Architect, the first step is to become a contributor by contacting us. For direct contact, please do not hesitate to contact us by finding prof. Greg Pasternack on the annual AGU meetings!

Using git brings many advantages for developers (nothing gets lost) and for users (consistent code). River Architect implies multiple repositories, which should be cloned and used in line with the descriptions in the Wiki for developers:

	The Wiki: https://github.com/RiverArchitect/RA_wiki.git

	Media (presentations and images): https://github.com/RiverArchitect/Media.git

	The website hosted on GitHub pages: https://github.com/RiverArchitect/RiverArchitect.github.io.git

	The main program (this is downloaded when clicking the Download button on the website): https://github.com/RiverArchitect/program.git

	Sample data are provided with https://github.com/RiverArchitect/SampleData.git

	Templates for developers are in https://github.com/RiverArchitect/development.git

To download, modify and push changes to River Architect download and install Git Bash [https://git-scm.com/downloads]. GitHub provides detailed descriptions and standard procedures to work with their repositories (read more [https://help.github.com/en/articles/cloning-a-repository]). The following “recipe” guides through the first time installation (cloning) of River Architect:

	Open Git Bash

	Type cd "D:/Target/Directory/" to change to the target installation directory (recommended: cd "D:/Python/RiverArchitect/"). If the directory does not exist, it can be created in the system explorer (right-click in empty space > New > > Folder).

	Clone the repository: git clone https://github.com/RiverArchitect/program

Now is the moment to modify the source code (e.g., modify or add new modules). After finalizing and testing (push debugged code only!) new code, go back to Git Bash and type:

	git status - this shows the modifications made.

	If the status seems OK with the consciously made changes, type git add .; if only single files were changed, use git add filename.py instead. Best solution: use a local gitignore file [https://help.github.com/en/github/using-git/ignoring-files].

	Commit changes git commit -m "Leave a message" - leave a significant and precise short message.

	git pull --rebase - if locally edited scripts were modified remotely since the last pull, this will prompt issues and highlight problematic section with >>>. Manually open concerned files and resolve the issues (delete invalid >>> highlights).

	git push

Done. Close Git Bash.

Push only relevant files and consider using a .gitignore [https://git-scm.com/docs/gitignore] file. River Architect already comes with a .gitignore file that excludes .pyc (compiled bytecodes) and .log (logfiles) files. To exclude local subdirectories from git push, or directory patterns, add them as follows (replace pattern2ignore and directory2ignore with folder names):

*.pyc
*.log
**/pattern2ignore/
/directory2ignore/

Being a small developer team, we are currently not using git branching [https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell]. This may change in the future …

 Edit the Wiki

Edit the Wiki

Whenever a module is edited or created, please add it to or edit it in the wiki. For this purpose:

	Clone the River Architect Wiki: git clone https://github.com/RiverArchitect/RA_wiki.git

	Modify the wiki markdown files which are located in RA_wiki/wiki/*.md (see conventions and documenting a new module)

	If necessary, edit the sidebar located in RA_wiki/_includes/own/sidebar.html

	Push changes:

git add .
git commit -m "Leave a message"
git pull --rebase
git push

Please note: if git pull --rebase encounters problems, issues will be highlighted in the edited markdown / HTML files.

Documentation conventions [bookmark: convent]

For editing markdown documents, we recommend using Notepad++ [https://notepad-plus-plus.org] with Editoria’s markdown syntax style [https://github.com/Edditoria/markdown-plus-plus].
Please be graphically descriptive and add figures to facilitate understanding your coding brilliance. For adding images, upload them to the River Architect Media/images [https://github.com/RiverArchitect/Media] (yes, you will need to clone this repository, too - read more about using git). Images can then be implemented in markdown file with:

![img_name](https://github.com/RiverArchitect/Media/raw/master/images/NEW_IMAGE.PNG)

Finally, please use grammar and spell checker before pushing changes.

Document a new module [bookmark: newmod]

For adding new module documentation, create a new markdown file (e.g., RA_wiki/wiki/NewModule.md). Describe the new module in the following order:

	Overview

	QuickGuide (normal usage - please add screenshots)

	Output (Products)

	Detailed descriptions / extended usage (e.g., equations and technical details)

Document Warning and Error messages prompted in try: - except: statements with self.logger.info("ERROR: Message") (see example in the module development Wiki). When writing new code, it is better to use precise exception rules such as except ValueError:. We often use the broad “shotgun” approach with except: only because we encountered unexpected exception types using arcpy. A better and future way of error message logging in River Architect will be to use self.logger.error() in the exception statement rather than self.logger.info(), which should exclusively be used to log calculation progress. Important is to add error messages, as well as warning messages, to the Troubleshooting Wiki. Use warning messages when a function can still work even though a variable assignment error occurred such as when an optional, additional raster is missing.

 Frequently Asked Questions (FAQ)

Frequently Asked Questions (FAQ)

For any non-answered question or other issues, explore the Troubleshooting Wiki [https://github.com/RiverArchitect/RA_wiki/Troubleshooting].

	How can I change map styles?

Map styles are controlled by settings made in the ArcGIS Pro project files stored in RiverArchitect/02_Maps/CONDITION/maps_CONDITION_design.aprx. Developers recommend to adapt the background image connections prior to mapping in the template project file RiverArchitect/02_Maps/templates/maps_CONDITION_design.aprx.

	What is a condition?

A condition refers to a planning state that is typically characterized by a 4-digits year indicator, followed by a layer specifier. Conditional Rasters (GeoTIFF format) are stored in RiverArchitect /01_Conditions/. For more information, refer to Signposts.

 Feature lifespan and design assessment

Feature lifespan and design assessment [https://github.com/RiverArchitect/RA_wiki/LifespanDesign]

	Quick GUIde to lifespan and design mapping [https://github.com/RiverArchitect/RA_wiki/LifespanDesign]

	Parameter hypotheses

	River design and restoration features

	Code extension and modification

	Conventions

	Order of analysis (hierarchy) and temp (.cache) Raster names

	Add parameters

	Add analysis

	Extend features

Code extension and modification[bookmark: code]

The code can be extended with new parameters (e.g., direct shear stress output from the numerical model), new analyses (e.g., a new shear velocity calculation method / law), and features (e.g., another plant species or block ramps).

Conventions

The Rasters creation results from and functions that are stored in cLifespanDesignAnalysis.py. functions create Rasters with lifespan data (0 to 20 years in the sample case) and functions create Rasters with design parameters such as the required stables grain size of angular boulders (rocks).

Class names start with an upper case letter and do not contain any special characters, also excluding dash or underscore signs. Instantiations of classes are all lower case letters. Features, Parameters, and Analysis classes are stored in separate files called cFeatureLifespan.py, cParameters.py and cLifespanDesignAnalysis.py, respectively. In addition, Feature classes may inherit subfeature classes from files names cSubfeature.py, for example, cPlants.py.

Function names consist of lower case letters only and the underscore sign “_” separates words.

All class names, variable names, and function names are in alphabetic order (a = up, z = down), except the s, which determine the parameter run hierarchy.

Order of analysis (hierarchy) and temp (.cache) Raster names[bookmark: order]

The best position of restoration features and their lifespans depend on multiple parameters in most cases. The output Rasters (lifespan maps) are computed in by batch-processing every parameter (i.e., one parameter map is processed after another). This batch processing strictly follows the below-listed hierarchy:

	Flow depth Rasters (dimensional) starting with the lowest discharge to the highest discharge

Internal Raster name: ras_hQQQQQQ

	Flow velocity Rasters (dimensional) starting with the lowest discharge to the highest discharge

Internal Raster name: ras_uQQQQQQ

	Hydraulic Rasters (dimensionless)

Internal Raster name: ras_taux (dimensionless bed shear stress) or ras_Fr (Froude number); if needed: the hierarchy among the dimensionless hydraulic numbers is not important

	Mobile bed, fine sediment, and stable grain size Raster analysis

Internal Raster name: ras_Dcr (mobile or stable grain size)

	Topographic change Rasters

Internal Raster names: ras_fill (fill Raster only), ras_scour (scour only) or ras_tcd (combined fill and scour)

	Detrended DEM Raster analysis

Internal Raster name: ras_det (relevant, e.g., for berm setback)

	Morphological Unit Rasters

Internal Raster name: ras_mu

	Side channel delineation

Internal Raster name: ras_sch

	Depth to water table

Internal Raster name: ras_d2w (relevant, e.g., for plantings and terrain grading)

The dimensional hydraulic maps need to be invoked before any other analysis is performed because the u and h maps are the only ones that entirely cover the area of interest, without “noData” pixels.

Every feature has a feature.parameter_list attribute containing a list of parameters that determine the feature lifespan and applicability space. The parameters are ordered in the feature.parameter_list according to the hierarchy. Once the last element of feature.parameter_list is processed and stored in the cache folder, the code exits the loop and copies the last ras_parameter to the Output/Rasters/condition/ folder. This copy is renamed lf_shortname, where the usage of shortnames is necessary because arcpy cannot save or copy Raster with names exceeding 13 characters when GRID Rasters are used (even though the primary Raster type if GeoTIFF).

Add parameters[bookmark: addpar]

The currently implemented parameters are listed in the parameters section. New parameters may require new input Rasters in addition to the default Rasters. The Rasters need to be saved in the folder 01_Conditions/CONDITION/ using the GeoTIFF (or Esri GRID) format. Other Raster formats will result in errors when the code attempts to save the final Rasters. The template for creating a new parameter class is shown in the box. Use the following workflow to implement a new parameter in the code:

	Create GeoTIFF parameter Rasters in the folder 01_Conditions/CONDITION/.

	Add a new parameter class in the file cParameters.py (see below explanations).

	Add a new function called analyse_parameter to the ArcPyAnalysis class in the file (see the add-analysis section) or change existing analysis for using the new parameter.

Add new parameter class to cParameters.py

	Replace EXPRESSIONS as indicated

	Write a function in alphabetic order in cParameters.py; e.g., the class Mypar should be placed below the existing classes GrainSizes and WaterTable

	Coding convention: the class name begins with a Capital letter (use CamelCase), where an instance of the class would begin with a small letter

class PARAMETERNAME():
 def __init__(self, condition):
 self.condition=condition # [str] planning situation, .e.g., "2008"
 self.raster_path='YOUR PATH/01_Conditions/'
 self.raster_names=['RASTER1', 'RASTER2', ..., 'RASTERi', ..., 'RASTERn']
 self.RAS1=arcpy.Raster(self.raster_path+self.condition+'/'+self.raster_names[0])
 self.RAS2=arcpy.Raster(self.raster_path+self.condition+'/'+self.raster_names[1])
 ...
 self.RASi=arcpy.Raster(self.raster_path+self.condition+'/'+self.raster_names[i-1])
 ...
 self.RASn=arcpy.Raster(self.raster_path+self.condition+'/'+self.raster_names[n-1])

Add analysis[bookmark: addana]

The analysis routines are differentiated between and -functions, which are contained in the file cLifespanDesignAnalysis.py.

analyse_-functions return Rasters containing estimated survival times (in years) or on/off values (1/0). An analyse_-function will always try to find existing Rasters produced from previous analysis functions according to the analysis hierarchy unless a dimensional hydraulic analysis (u, h or their combination) is performed. For this reason, analyse_-functions use the verify_raster_info-function to look up for previous analyses that are stored in raster_dict_lf. At the end of an analyse_-function, raster_dict_lf is updated using raster_dict_lf.update("ras_current"). This serial Raster analysis produces lifespan Rasters, which can be regardlessly converted to design Rasters by the save_manager-function when the feature properties are set to self.ds = True while self.lf = False (read more about adding features).

design_-functions produce Rasters containing specific parameter values, such as the critical grain size in inches. A design_-function will update the raster_dict_ds-dictionary which is passed to the save_manager-function when the feature variable self.ds = True.

The major difference between the raster_dict_lf and raster_dict_ds-dictionaries is that the save_manager() saves only the last hierarchy-based entry of to produced lifespan Rasters but all entries of raster_dict_ds to produced design Rasters. The combination of multiple parameters into one design Raster can be achieved anyway by setting self.ds = True while self.lf = False (see add features section). The latter settings convert lifespan Rasters to design
Rasters.

Use the following workflow to implement a new parameter in the code:

	Ensure that all required parameters are available (see the parameter list and Add parameters section).

	Create an identifier string of 2 to 3 characters; the following explanations refer to a dummy identifier named NEW (replace with lowercase letters).

	Add a new analyse_NEW or design_NEW-function in the file cLifespanDesignAnalysis.py (cf. code example below).

	In cFeatureLifespan.py ensure that concerned features have the
following properties:

	The feature.paramter_list needs to contain the new analysis’ identifier (NEW)

	All required threshold values are defined (feature.threshold_NEW1 = ...)

	In featureanalysis.py, add a call of the new function:

	 if parameter_name == "NEW":
	 feature_analysis.analyse_NEW(feature.threshold_NEW1, ...)

The template for a new analyse_NEW-function in the file cLifespanDesignAnalysis.py starts with the general statement of unit conversion (controlled by user input) and continues as follows (pay attention on indentation):

 def analyse_NEW(self, threshold_NEW1, ...):
 # Lines where changes are required are tagged with #--CHANGE--#
 # Convert length units of threshold values
 threshold_LENGTH = threshold_LENGTH * self.ft2m #--CHANGE--#
 try:
 arcpy.CheckOutExtension('Spatial') # check out license
 arcpy.gp.overwriteOutput = True
 arcpy.env.workspace = self.cache
 self.logger.info(" >>> Analyzing NEW.") #--CHANGE--#
 parameter1 = PARAMETER1(self.condition) #--CHANGE--#
 parameter2 = PARAMETER2(self.condition) #--CHANGE--#
 ... #--CHANGE--#
 self.ras_NEW = calculation with parameter1, parameter2, ... threshold_NEW1, ... #--CHANGE--#
 self.ras_LF = self.compare_raster_set(parameter_ras, threshold)
 # verify existing analyses
 if self.verify_raster_info():
 self.logger.info(" based on raster: " + self.raster_info_lf)
 # make temp_ras without noData pixels
 temp_ras_NEW = Con((IsNull(self.ras_NEW) == 1), (IsNull(self.ras_NEW) * some_factor), self.ras_NEW) #--CHANGE--#
 # compare temp_ras with raster_dict but use self.ras_... values if condition is True
 ras_NEW_update = Con((temp_ras_NEW == 1), self.ras_NEW, self.raster_dict_lf[self.raster_info_lf]) #--CHANGE--#
 self.ras_NEW = ras_NEW_update #--CHANGE--#
 # update lf dictionary
 self.raster_info_lf = "ras_NEW" #--CHANGE--#
 self.raster_dict_lf.update({self.raster_info_lf: self.raster_info_lf})
 arcpy.CheckInExtension('Spatial')
 except arcpy.ExecuteError:
 self.logger.info("ExecuteERROR: (arcpy) in NEW analysis.") #--CHANGE--#
 self.logger.info(arcpy.GetMessages(2))
 arcpy.AddError(arcpy.GetMessages(2))
 except Exception as e:
 self.logger.info("ExceptionERROR: (arcpy) in NEW analysis.") #--CHANGE--#
 self.logger.info(e.args[0])
 arcpy.AddError(e.args[0])
 except:
 self.logger.info("ERROR: (arcpy) in NEW analysis.") #--CHANGE--#
 self.logger.info(arcpy.GetMessages())

The template for a new -function in the file cLifespanDesignAnalysis.py is as follows (pay attention on indentation):

 def design_NEW(self, threshold_NEW1, ...):
 # Lines where changes are required are tagged with #--CHANGE--#
 try:
 arcpy.CheckOutExtension('Spatial') # check out license
 arcpy.gp.overwriteOutput = True
 arcpy.env.workspace = self.cache
 self.logger.info(" >>> Designing NEW.") #--CHANGE--#
 parameter1 = PARAMETER1(self.condition) #--CHANGE--#
 parameter2 = PARAMETER2(self.condition) #--CHANGE--#
 ... #--CHANGE--#
 self.ras_NEW1 = calculation with parameter1, parameter2, ... threshold_NEW1, ... #--CHANGE--#
 ## if required add more design rasters (all need to be added to self.raster_dict_ds)
 self.ras_NEWi = another (optional) calculation with parameter1, parameter2, ... threshold_NEW1, ... #--CHANGE--#

 # update ds dictionary
 self.raster_dict_ds.update({self.raster_info_lf: self.ras_NEW1}) #--CHANGE--#
 # if required uncomment:
 # self.raster_dict_ds.update({self.raster_info_lf: self.ras_NEWi}) #--CHANGE--#

 arcpy.CheckInExtension('Spatial')

 except arcpy.ExecuteError:
 self.logger.info("ExecuteERROR: (arcpy) in NEW design.") #--CHANGE--#
 self.logger.info(arcpy.GetMessages(2))
 arcpy.AddError(arcpy.GetMessages(2))
 except Exception as e:
 self.logger.info("ExceptionERROR: (arcpy) in NEW design.") #--CHANGE--#
 self.logger.info(e.args[0])
 arcpy.AddError(e.args[0])
 except:
 self.logger.info("ERROR: (arcpy) in NEW design.") #--CHANGE--#
 self.logger.info(arcpy.GetMessages())

Extend features[bookmark: addfeat]

The currently implemented features are listed in the Features page. New features can be implemented in the cFeatureLifespan.py file using the following workflow:

	Ensure that all required parameters are available (see the parameter list and Add parameters section).

	Ensure that all required analysis and / or design functions are available (see Add analyses).

	Choose a name for the new feature beginning with an uppercase letter followed by lowercase letters only; the name NewFeature is subsequently used for illustrative purposes

	In cFeatureLifespan.py modify the class RestorationFeature:

	Implement the new feature instantiation when called by adding the following code to def __init__(self, feature_name, ∗sub_feature):

if feature_name == "NewFeature" and not(sub_feature):

 self.feature = NewFeature()

 self.sub = False

 self.name = feature_name

	Please note: the shortname should not have more than 6 characters; otherwise the code will cutoff the shortname
automatically.

	Both the __init__(self) initiation and the NewFeature instantiation are necessary to facilitate the external access to Methods and Properties.

	A feature may have subfeatures (as for example class Plantings). In this case, replace and not(sub_feature) with and sub_feature and set self.sub = True.

Add a new class to cFeatureLifespan.py according to the example below, considering the required hierarchically ordered self.parameter_list, self.threshold_ and lifespan (self.lf=True/False) / design (self.ds=True/False) Raster analysis properties.

	Add new column in LifespanDesign/.templates/threshold_values.xlsx and add the feature name as well as relevant threshold values.

	Commit changes in RiverArchitect/ModifyTerrain/cDefinitions.py :

	Append the shortname to self.id_list = ["backwt", "widen", "grade", "sideca", "sidech", "elj", "fines", "box", "cot", "whi", "wil", "rocks", "gravin", "gravou", "cust"]

	Append full feature name to self.name_ _list = ["Backwater", "Bermsetback (Widen)", "Grading", "Sidecavity", "Sidechannel", "Streamwood", "Finesediment", "Plantings: Box Elder", "Plantings: Cottonwood", "Plantings : White Alder", "Plantings: Willows", "Boulders/rocks", "Gravel replenishment", "Gravel stockpile ", "Custom DEM"]

	Append feature threshold column (thresholdvalues.xlsx) name in self.threshold_cols = ["E", "Q", "G", "O", "P", "R", "F", "J", "K", "L", "M", "N", "H", "I", "S"]

The template for a new NewFeature-class in the file cFeatureLifespan.py is as follows (pay attention on indentation), given that no subfeatures apply:

class Newfeature():
 # This is the Newfeature class.
 def __init__(self):
 self.ds = False # identify if design map applies
 self.lf = True # identify if lifespan map applies
 self.parameter_list = ["PAR1", "PAR2", ..., "PARi", , "PARn"] # Respect Hierarchy -- example: PAR1 = "hyd"
 self.shortname = "max6ch"
 thresh = ThresholdDirector(self.shortname) # instantiate reader of threshold values
 ## uncomment and adapt follow line if PAR = mu applies
 # self.mu_bad = thresh.get_thresh_value("mu_bad")
 # self.mu_good = thresh.get_thresh_value("mu_good")
 # self.mu_method = thresh.get_thresh_value("mu_method")
 self.threshold_1 = thresh.get_thresh_value("ID_1")
 self.threshold_2 = thresh.get_thresh_value("ID_2")
 ...
 self.threshold_i = thresh.get_thresh_value("ID_i")
 ...
 self.threshold_n = thresh.get_thresh_value("ID_n")
 thresh.close_wb() # close threshold workbook
 def __call__(self):
 pass

Valid ID_i strings are either string of: "mu bad", "mu good", "mu method","D", "d2w low", "d2w up", "det low", "det up", "fill", "Fr", "freq", "h", "inverse_tcd ", "scour", "sf", "taux", "u". The get_thresh_value("ID_i") -function is a routine of the ThresholdDirector class which is stored in LifespanDesign/cThresholdDirector.py. Modifications of the ThresholdDirector class are deprecated and threshold values should be modified in the spreadsheet LifespanDesign/.templates/threshold_values.xlsx.

If the new feature has subfeatures, the following template applies:

class NewFeature(Subfeature_1, Subfeature_2, ..., Subfeature_i, ... Subfeature_n):
 # This is the NewFeature class inheriting from Subfeature_1 to Subfeature_n.
 def __init__(self, subfeature):
 self.lf = True # identify if lifespan map applies
 self.ds = False # identify if design map applies
 if subfeature == 'subfeature_1':
 Subfeature_1.__init__(self)
 if subfeature == 'subfeature_2':
 Subfeature_2.__init__(self)
 if subfeature == 'subfeature_i':
 Subfeature_i.__init__(self)
 if subfeature == 'subfeature_n':
 Subfeature_n.__init__(self)
 def __call__(self):
 pass

Then, the subfeature needs to be defined (e.g., in an external file called cNewSubFeature.py). In this case, add from cNewSub Feature import ∗ at the top of cFeatureLifespan.py. Use the following class-template for each subfeature(SubFeature_1,..., SubFeature_n). Please note that the lifespan self.lf = True / False and design self.ds = True / False properties are already assigned in the inheriting feature class.

class NewSubFeature_i():
 # This is the NewSubFeature_i class.
 def __init__(self):
 self.parameter_list = ["PAR1", "PAR2", ..., "PARi", , "PARn"] # Respect Hierarchy!; example: PAR1 = "hyd"
 self.shortname = "max6ch"
 thresh = ThresholdDirector(self.shortname) # instantiate reader of threshold values
 ## uncomment and adapt follow line if PAR = mu applies
 # self.mu_bad = thresh.get_thresh_value("mu_bad")
 # self.mu_good = thresh.get_thresh_value("mu_good")
 # self.mu_method = thresh.get_thresh_value("mu_method")
 self.threshold_1 = thresh.get_thresh_value("ID_1")
 self.threshold_2 = thresh.get_thresh_value("ID_2")
 ...
 self.threshold_i = thresh.get_thresh_value("ID_i")
 ...
 self.threshold_n = thresh.get_thresh_value("ID_n")
 thresh.close_wb() # close threshold workbook
 def __call__(self):
 pass

 Feature lifespan and design assessment

Feature lifespan and design assessment

	Introduction to lifespan and design mapping [https://github.com/RiverArchitect/RA_wiki/LifespanDesign]

	Quick GUIde to lifespan and design maps [https://github.com/RiverArchitect/RA_wiki/LifespanDesign]

	Parameter hypotheses

	River design and restoration features

	Code extension and modification

Parameter hypotheses[bookmark: par]

Combinations of recurring parameters determine the lifespans of features. The code analyses the following parameters, where the application order (hierarchy) differs from the alphabetic order for reasons of map integrity (see coding conventions in the Signposts [https://github.com/RiverArchitect/RA_wiki/Signposts]). Calculation details are provided within the descriptions for defining threshold values.

	chsi composite Habitat Suitability Index (dimensionless value between 0 and 1)

	d2w is the surface depth to the groundwater table (length units)

	det is the detrended DEM (length units)

	Dcr are mobile or stable grain sizes that are entrained by (non-frequent) discharges that occur according to a defined return period (see angular boulders)

	fill corresponds to annual sediment deposition rates (length units; see also Wyrick and Pasternack 2016 [https://onlinelibrary.wiley.com/doi/full/10.1002/esp.3854])

	Fr is the Froude number (dimensionless hydraulic variable) corresponding to u/(h g), where g denotes gravity acceleration

	h is the flow depth (length units)

	mu are the morphological units (strings; see also Wyrick and Pasternack 2014 [https://www.sciencedirect.com/science/article/pii/S0169555X14000099])

	Se is the energy slope (dimensionless hydraulic variable; cf. angular boulders and side channels sections)

	scour corresponds to annual erosion rates (length units, see alsoWyrick and Pasternack 2016 [https://onlinelibrary.wiley.com/doi/full/10.1002/esp.3854])

	sidech delineation of priority regions for side channels (Van Denderen et al. 2017 [https://onlinelibrary.wiley.com/doi/full/10.1002/esp.4267])

	taux (or τ*) is the dimensionless bed shear stress and its critical value τ*, cr (–)

	tcd combines scour and fill analysis

	u is the flow velocity (length per time: fps or m/s)

	wild wildcard parameter that can only take on/off values (noData, 0 or 1)

The code uses the mu raster to identify feature-adequate morphological units that are stored a feature.mu_good list and feature-inadequate units that are stored in a feature.mu_bad list. Thus, two approaches are possible: an inclusive approach that limits relevant areas using the feature.mu_good list and an exclusive approach that excludes non-relevant areas using the feature.mu_bad list. The following morphological units are considered Wyrick and Pasternack (2014) [https://www.sciencedirect.com/science/article/pii/S0169555X14000099]:

	Morphological Units
	

	agriplain
	bank

	bedrock
	chute

	cutbank
	fast glide

	flood runner
	floodplain

	high floodplain
	hillside

	island high floodplain
	island-floodplain

	lateral bar
	levee

	medial bar
	mining pit

	point bar
	pond

	pool
	riffle

	riffle transition
	run

	slackwater
	slow glide

	spur dike
	swale

	tailings
	terrace

	tributary channel
	tributary delta

	in-channel bar (all within-bankfull bars)
	

 Mapping

Mapping

	Standard layouts

	Modify the symbology

	Modify map extents

	Code information

About Mapping with River Architect[bookmark: prepare]

The RiverArchitect/02_Maps/ folder contains a template structure that is copied by the LifespanDesign, Max Lifespan, and Modify Terrain modules to map their geodata outputs. The [[HabitatEvaluation]] module produces geofiles that can be mapped within the map project file of the ProjectMaker module (RiverArchitect/ProjectMaker/.templates/REACH_stn_vii_TEMPLATE/ProjectMaps.aprx). This differentiation enables distinguished mapping of river sections and project (versions). This Wiki only treats the automated mapping routines of the results of the LifespanDesign, Max Lifespan, and Modify Terrain modules. The ProjectMaker’s result mapping [https://github.com/RiverArchitect/RA_wiki/ProjectMaker#mapping-of-construction-elements] is design for a user-specific map modifications and export.

Before running any of the before-mentioned modules for mapping, open RiverArchitect/02_Maps/templates/river_template.aprx (ArcGIS Pro project file) and correct the background layer image source (adapt to CONDITION) by right-clicking on the background layer (see figure below), then click on Properties > Source > Set Data Source.... Navigate to the CONDITION folder and select the CONDITION’s background.tif (the background raster file must have the name background.tif - mapping will be inconsistent otherwise).

[image: adaptproject]

The standard symbology for lifespan rasters may be modified and it can be restored by right-clicking on a lifespan or Best Lifespans raster layer > Symbology. The Symbology opens up and the standard symbology can be restored from the top-right drop-down menu (import (...) > nagivate to RiverArchitect/02_Maps/templates/symbology/ > select LifespanRasterSymbology.lyrx).

The project (.aprx) files contains a set of pre-defined layouts and layer names and these names must not be changed. Only consider changing the symbology or data sources, because the modules will automatically update the layer connection database and dataset according to the output data (read more [https://pro.arcgis.com/en/pro-app/arcpy/mapping/updatingandfixingdatasources.htm]).

Standard layouts[bookmark: lyts]

LifespanDesign layouts:

	layout_lf for lifespan mapping

	layout_ds_bio for bioengineering features [https://github.com/RiverArchitect/RA_wiki/River-design-features#bioeng]

	layout_ds_Dcr for grain mobility maps [https://github.com/RiverArchitect/RA_wiki/River-design-features#rocks] and sediment replenishment / gravel augmentation [https://github.com/RiverArchitect/RA_wiki/River-design-features#gravel]

	layout_ds_Dw for wood [https://github.com/RiverArchitect/RA_wiki/River-design-features#elj] diameter mobility maps

	layout_ds_FS_D15 for fine sediment [https://github.com/RiverArchitect/RA_wiki/River-design-features#finesed]’s mobile D15 sizes

	layout_ds_FS_D85 for fine sediment [https://github.com/RiverArchitect/RA_wiki/River-design-features#finesed]’s mobile D85 sizes

	layout_ds_SeS0 for ratios between terrain and (hypothetic) energy slopes (side channels [https://github.com/RiverArchitect/RA_wiki/River-design-features#sidechnl])

	layout_ds_sideca for side cavity [https://github.com/RiverArchitect/RA_wiki/River-design-features#sidecav] application site mapping

	layout_ds for widen [https://github.com/RiverArchitect/RA_wiki/River-design-features#berms] application site mapping

Max Lifespan layouts:

	layout_mlf_bioeng for best lifespan maps of the (other) bioengineering feature group [https://github.com/RiverArchitect/RA_wiki/River-design-features#featoverview]

	layout_mlf_maintenance for best lifespan maps of the maintenance/longitudinal connectivity feature group [https://github.com/RiverArchitect/RA_wiki/River-design-features#featoverview]

	layout_mlf_plants for best lifespan maps of the vegetation plantings feature group [https://github.com/RiverArchitect/RA_wiki/River-design-features#plants]

	layout_mlf_terraforming for best lifespan maps of the terraforming feature group [https://github.com/RiverArchitect/RA_wiki/River-design-features#featoverview]

Modify Terrain layouts:

	volumes_cust_neg for mapping the terrain differences (excavation terraforming works) of a manually modified DEM

	volumes_cust_pos for mapping the terrain differences (fill terraforming works) of a manually modified DEM

	volumes_grade_neg for mapping the terrain differences of parametrically (threshold-based) floodplain grading [https://github.com/RiverArchitect/RA_wiki/River-design-features#grading] within the Modify Terrain module (only excavation neg is meaningful)

	volumes_widen_neg for mapping the terrain differences of parametrically (threshold-based) river widening [https://github.com/RiverArchitect/RA_wiki/River-design-features#berms] within the Modify Terrain module (only excavation neg is meaningful)

Modify the symbology[bookmark: sym]

For creating maps with a different symbology then the template symbology, proceed as follows:

	Run the module Map Maker function to create a copy of the template map folder, which will be created in RiverArchitect/02_Maps/CONDITION/.

	Open the automatically created RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx and adapt the symbology and legend as needed.

	Re-run the module Map Maker function to re-create (overwrite previous) .PDF maps. Note: When a module detects an existing version of RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx for the CONDITION that it is applied on, it will NOT OVERWRITE the PROJECT MAP_CONDITION_DESIGN.APRX file, but it will “overwrite existing .PDF maps.”

Modify map extents[bookmark: extent]

The global map extents are determined by the input rasters to map. The same is true for raster calculations. The application scheme of River Architect (Home Wiki page) starts with the usage of the LifespanDesign module. Here, the calculation can be limited to the background.tif raster. Thus, for changing map extents, adapt the extent of input rasters for the LifespanDesign and Max Lifespan modules. For the Modify Terrain module adapt the dem.tif raster in the input/ condition [https://github.com/RiverArchitect/RA_wiki/Signposts#conditions] folder, which determines the map extents. Moreover, when applying Modify Terrain, do not use another condition [https://github.com/RiverArchitect/RA_wiki/Signposts#conditions] folder for the modified DEM for volume calculation, because it may interfere, for example, with the dem_detrend.tif raster. Preferably use a copy or extract the modified condition’s dem.tif to ModifyTerrain/Input/DEM/CONDITION/.

Moreover, each module has an own mapping definition file to enable reach-wise or multiple map creation within one PDF. The particular map extent definitions are:

	LifespanDesign: RiverArchitect/LifespanDesign/.templates/mapping.inp (see definitions [https://github.com/RiverArchitect/RA_wiki/LifespanDesign-input-files#mapping])

	Max Lifespan: RiverArchitect/MaxLifespan/.templates/mapping.inp (definitions are analogue to the LifespanDesign module [https://github.com/RiverArchitect/RA_wiki/LifespanDesign-input-files#mapping])

	Modify Terrain: RiverArchitect/ModifyTerrain/.templates/computation_extents.xlsx (see reach definitions [https://github.com/RiverArchitect/RA_wiki/ModifyTerrain#input-set-reaches])

Code information[bookmark: code]

Mapping is centralized for the LifespanDesign, Max Lifespan, and Modify Terrain modules in the Mapper() class that is stored in RiverArchitect/.site_packages/riverpy/cMapper.py. The layout and layer names are hard-coded (sorry for that…) and this is why layer and layout names should not be changed in the project (.aprx) files.

 Feature lifespan and design assessment

Feature lifespan and design assessment [https://github.com/RiverArchitect/RA_wiki/LifespanDesign]

	Quick GUIde to lifespan and design maps [https://github.com/RiverArchitect/RA_wiki/LifespanDesign]

	Parameter hypotheses

	River design and restoration features

	Introduction and predefined features

	Feature-wise lifespan and design maps

	Details and parameters of pre-defined features

	Angular boulders (rocks) and grain mobility

	Backwater

	Nature-based engineering

	Berm Setback / Widen

	Streamwood and Engineered Log Jams

	Fine sediment

	Grading

	Vegetation Plantings

	Sediment replenishment / gravel augmentation

	Side cavities

	Side channels / anabranches

	Instructions for defining new and modifying existing features

	Code extension and modification

Introduction and Feature Groups[bookmark: featoverview]

The River Architect differentiates between feature layers that actively modify the terrain (terraforming features), vegetation plantings features as well as nature-based engineering features that provide direct aid for habitat enhancement or stabilize terrain modifications, and features that maintain artificially created habitat or support longitudinal connectivity. Feature attributes can be modified in the thresholds workbook (RiverArchitect/LifespanDesign/.templates/threshold_values.xlsx), which can also be open from the GUI:

[image: thresholds]

Changes in this workbook should limit to cells with INPUT-type formatting and only Feature Names and Feature IDs of vegetation plantings should be modified. Other modifications may cause calculation instabilities or program crashes. The following list provides an overview of default features, where Feature IDs occur in output file names of Rasters, layouts, PDF-maps, and spreadsheets and plantings

	Terraforming features modify the terrain elevation:

	Backwater, representative for swale and slackwater creation (Feature ID: backwt)

	Berm Setback (Widening, Feature ID: widen)

	Grading of terrain (Bar and Floodplain Lowering Feature ID: grade)

	Side Cavities (Bank Scalloping or Groins, Feature ID: sideca)

	Side Channels, representative for Anabranches, Multithread- or Anastomosed Channels and Flood Runners (Feature ID: sidech)

	Plantings features include up to four plant species. The pre-defined plant species are (can be modified, except for the fields that are marked for input in the thresholds workbook):

	Box Elder (Acer Negundo, Feature ID: box)

	(Fremont) Cottonwood (Populus Fremontii, Feature ID: cot)

	White Alder (Alnus Rhombifolia, Feature ID: whi)

	Willows (Salix Goodingii / laevigata / lasiolepis / alba, Feature ID: wil)

	Other nature-based engineering features have a direct effect on habitat suitability and stabilize terrain modifications (framework features). These features are considered:

	Streamwood, engineered log jams (ELJ) and large woody material (LWM) placement including rootstocks (Feature ID: elj)

	Grains / Boulders (angular), representative for coarse material placement (Feature ID: grains)

	Other nature-based engineering for terrain (slope) stabilization comprises for instance brush layers and/or fascines (Feature ID: bio)

	Connectivity features enhance the stability of (artificial) river systems that result from the above feature applications:

	Sediment Replenishment for restoring sediment continuity (instream, Feature ID: gravin)

	Stockpiles of gravel or Gravel Augmentation for restoring sediment continuity(on banks or floodplain, Feature ID: gravou)

	Incorporation of Fine Sediment in soils to increase the survivorship of plantings (Feature ID: fines)

	Flow controls are only indirectly considered in the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module, where discharges drive habitat suitability

	Dam removal and the removal of other lateral barriers (e.g., ground sills) are currently not considered in River Architect

In addition, the River Architect provides the option of limiting restoration feature maps to zones of low habitat suitability (see details in the descriptions of the SHArC [https://github.com/RiverArchitect/RA_wiki/SHArC] module).

Feature-wise lifespan and design maps[bookmark: lffeats]

The Lifespan & Design [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] tab enables the creation of lifespan and design maps of the features defined in the threshold_values.xlsx workbook. The names of lifespan and design maps start with either lf_ for Lifespan Maps or ds_ for Design Maps, followed by the Feature ID defined in the threshold_values.xlsx workbook. Design Maps additionally include a string of the parameter that they define (e.g. _Dst_ contains stable grain size diameters and _Dw_ contains stable wood log diameters referring to a user-defined flood frequency). Thus, typical names are:

	Lifespan Maps: lf_FeatureID.tif

	Design Maps: ds_PARAMETER_FeatureID.tif

Moerover, lifespan and design map Rasters are saved in different layer folders, depending on the feature groups, with the following guidelines:

	TERRAFORMING (threshold_values.xlsx Columns E-I): .../RiverArchitect/LifespanDesign/Output/Rasters/CONDITION_lyr10/lf_fID.tif --ds_PAR_fID.tif

	VEGETATION PLANTINGS (threshold_values.xlsx Columns J-M): .../RiverArchitect/LifespanDesign/Output/Rasters/CONDITION_lyr20/lf_fID.tif

	NATURE-BASED ENGINEERING FEATURES (threshold_values.xlsx Columns N-P): .../RiverArchitect/LifespanDesign/Output/Rasters/CONDITION_lyr20/lf_fID.tif --ds_PAR_fID.tif

	CONNECTIVITY (threshold_values.xlsx Columns Q-S): .../RiverArchitect/LifespanDesign/Output/Rasters/CONDITION_lyr30/lf_fID.tif --ds_PAR_fID.tif

Pre-defined features and hypotheses[bookmark: feat]

The standard installation of River Architect comes with a set of pre-defined river design features (cf. Schwindt et al. 2019 [https://www.sciencedirect.com/science/article/pii/S0301479718312751]). For topographic change, scour and fill rates are considered over a 3-year observation period (2008 to 2014, see Weber and Pasternack 2017 [http://www.sciencedirect.com/science/article/pii/S0169555X16309862]). The following hypotheses apply to the pre-defined features.

Grains, Grain Mobility, and Angular boulders[bookmark: rocks]

The mobile grain size or the necessary size for the punctual placing of boulders and comprehensive rock cover is referred to as “Grains/Boulders” in the default threshold_values.xlsx workbook. Such information is necessary, for example, to stabilize banks or erosion-prone surfaces (e.g., Maynord and Neill 2008 [https://ascelibrary.org/doi/10.1061/9780784408148.apb]). Lifespan maps of the mobility of the present terrain refer to the present grain size (.../01_Conditions/CONDITION/dmean.tif). The required minimum diameter for boulders or mobile grains results from the spatial evaluation of Dcr on mobile grain design maps.

Recommended threshold values in the threshold_values.xlsx workbook are:

	Critical dimensionless bed shear stress taux of τ*,cr equal to 0.047 (dimensionless);

	Topographic change: scour rate tcd-scour (optional) of 0.3 m (1 ft) multiplied with the number of observation years (if a topographic change raster includes scour/fill observed over multiple years);

	Frequency threshold for design maps (e.g., 20 years);

	Dimensionless safety factor SF for design maps.

The Lifespan & Design [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] tab enables the creation of:

	Lifespan Maps with output Raster name: .../LifespanDesign/Output/Rasters/CONDITION_lyr20/lf_grains.tif; and

	Design Maps with output Raster name: .../LifespanDesign/Output/Rasters/CONDITION_lyr20/ds_Dst_grains.tif in m or inches, which is a derivative of the Gauckler-Manning-Strickler formula using Manning’s n [https://en.wikipedia.org/wiki/Manning_formula#Manning_coefficient_of_roughness]:

Dcr = SF · u2 · n2 / [(s - 1) · h1/3 · τ*,cr]

Dcr is the minimum required angular boulders (rocks) size (in m or inches); s is the dimensionless relative grain density (ratio of sediment and water density, equal to 2.68); and n is Manning’s n [https://en.wikipedia.org/wiki/Manning_formula#Manning_coefficient_of_roughness] can be changed in the GUI (in s/ft1/3 or s/m1/3 - an internal conversion factor of k = 1.49 applies in the case of the US customary system). The following parameters are taken from .../01_Conditions/CONDITION/ input GeoTIFFs

	h is the flow depth (pixel-wise, in m or ft);

	u is the flow velocity (pixel-wise, in m/s or fps).

NOTE: Lifespan and Design Rasters of mobile grains are sensitive to the safety factor and limitations due to scour/fill rates input Rasters (possibly not covering the whole project area). Verify output Rasters and omit scour/fill rates and/or the safety factor to obtain better results.

Backwater[bookmark: backwtr]

The creation of artificial backwaters and swales, or more generally calm water zones, makes sense where the stream power is low and the observed topographic changes are small. Recommended threshold values in the threshold_values.xlsx workbook are:

	Flow velocity u of 0.03 m/s (0.1 fps);

	Frequency threshold (design maps) of 5 years;

	Critical dimensionless bed shear stress taux with a threshold of τ*,cr threshold of 0.047.

	Topographic change: fill & scour rates (tcd-scour-fill) of >= 0.1 m (0.3 ft) multiplied with the number of observation years (if a topographic change raster includes scour/fill observed over multiple years).

	Morphological Units (relevance-method) with mu_relevance = ["agriplain", "backswamp", "mining pit", "pond", "pool", "slackwater", "swale"].

The Lifespan & Design [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] tab enables the creation of:

	Lifespan Maps with output Raster name: .../LifespanDesign/Output/Rasters/CONDITION_lyr10/lf_backwt.tif; and

	Design Maps with output Raster name: .../LifespanDesign/Output/Rasters/CONDITION_lyr10/ds_Dst_backwt.tif.

Nature-based engineering (Other) [bookmark: bioeng]

In the context of river engineering, nature-based methods apply living materials (plants) to stabilize terrain and enhance habitat. Please note that River Architect internally uses the shortnames "bioengineering" or "bioeng" when referring to nature-based engineering features. Dry conditions in arid and semi-arid (Mediterranean) climate zones limits the possibilities of application. Therefore, River Architect additionally considers the placement of angular boulders (see angular boulders). Recommended threshold values in the threshold_values.xlsx workbook are:

	Depth to groundwater d2w with minimum and maximum values as a function of vegetation plantings requirements or integration depth of nature-based engineering features. Thus, River Architect applies nature-based engineering features such as fascines or geotextile between the (min) value in row 7 and the (max) value in row 8 of the threshold value workbook. Regions with at terrain slope above the threshold defined in row 20 and above the maximum Depth to the groundwater defined in row 8 get mineral nature-based engineering (such as rock paving or riprap) assigned according to the stable grain size. The differentiation is made because nature-based engineering features may dry out when the water table is too far away (vertically).

	Terrain slope S0 of 0.2 (20%).

River Architect uses the .../01_Conditions/CONDITION/dem.tif to compute the percent-wise terrain slope S0, where modified terrain with slopes of more than the S0 threshold is considered to require reinforcement.

The Lifespan & Design [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] tab enables the creation of :

	Lifespan Maps with output Raster names:

	.../LifespanDesign/Output/Rasters/CONDITION_lyr20/lf_bio_v_bio.tif (vegetative nature-based engineering)

	.../LifespanDesign/Output/Rasters/CONDITION_lyr20/lf_bio_m_bio.tif (mineral, i.e., boulder, nature-based engineering)

These lifespan maps represent basically Design Maps that indicate the applicability of features. However, the units of these rasters are lifespans in years, which is necessary for the later on automated placement of most suitable features, where lifespans represent the driving parameter to identify the most suitable features.

Berm Setback / Widen[bookmark: berms]

Berms are artificial lateral confinements that are represented by man-made bars and dikes. Also, levees represent lateral confinement but their flood protection-function should not be deleted, and therefore, levees are not considered for setback action. River Architect internally replaces the strings “Bermsetback” with “Widen” because the removal of lateral confinements represents a river widening. Recommended threshold values in the threshold_values.xlsx workbook are:

	Morphological Units (relevance-method) with mu_relevance = ["bank", " floodplain ", "high floodplain", "island floodplain ", "island high floodplain ", "lateral bar", "levee", "spur dike", "terrace"].

	Detrended DEM det with a lower limit of 5.2 m (17 ft) and an upper limit of 7.6 m (25 ft) to limit the application of berm setback and widening to economically reasonable extents.

The Lifespan & Design [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] tab enables the creation of:

	Design Maps with output Raster name: .../LifespanDesign/Output/Rasters/CONDITION_lyr10/det_widen.tif.

Lifespan Maps are not created unless activated at the bottom of the threshold_values.xlsx workbook.

Streamwood and Engineered Log Jams[bookmark: elj]

Lifespan maps and design maps are created for streamwood placement and engineered log jams (ELJs). Recommended threshold values in the threshold_values.xlsx workbook are:

	Flow depth h corresponding to 1.7 multiplied with a log diameter of (e.g., 0.6 m · 1.7 = 1.02 m or 3.34 ft) (see Lange and Bezzola 2005) [https://www.ethz.ch/content/dam/ethz/special-interest/baug/vaw/vaw-dam/documents/das-institut/mitteilungen/2000-2009/188.pdf];

	Froude number Fr of 1.0 (see Lange and Bezzola 2005) [https://www.ethz.ch/content/dam/ethz/special-interest/baug/vaw/vaw-dam/documents/das-institut/mitteilungen/2000-2009/188.pdf];

	Morphological Units (avoidance-method) with mu_avoidance = [tributar channel, tributary delta] (see below explanations);

	Frequency threshold (design maps) of 10.0 years (computed as a function of flow depth, not Froude number, see below explanations).

Regarding morphological units, riffle-pool and plane bed morphologies are favorable for streamwood placement, where side channel and tributary systems are not convenient for wood placement. Streamwood inclusive list is defined as

mu_good = ["riffle", "riffle transition", "pool", "floodplain", "island floodplain", "lateral bar", "medial bar", "run"]

and the exclusive list is defined as mu_bad = ["tributary channel", "tributary delta"].

For streamwood, the exclusive approach based on mu_bad applies (see parameters).

The design maps for the minimum required log diameter Dw results from Ruiz-Villanueva et al. (2016) [https://www.sciencedirect.com/science/article/pii/S0169555X15002019?via%3Dihub]’s interpolation curve as a function of the flow depth. The module applies on the single-thread formula because it returns larger values for the log diameter than the multi-thread formula when the probability of motion is set to zero: Dw = 0.32 / 0.18·h. The output map limits to regions where Dw is smaller than 7.6 m (300 in - lease contact us if that is not sufficient for a particular application).

The Lifespan & Design [https://github.com/RiverArchitect/RA_wiki/LifespanDesign] tab enables the creation of:

	Lifespan Maps with output Raster name: .../LifespanDesign/Output/Rasters/CONDITION_lyr20/lf_wood.tif; and

	Design Maps with output Raster name: .../LifespanDesign/Output/Rasters/CONDITION_lyr20/ds_Dw_wood.tif.

Fine sediment[bookmark: finesed]

Artificially introduced fine sediment facilitates the root growth of new plantings but the flow may easily entrain (mobilize) artificially placed fine sediment. Moreover, spontaneous percolation of fine sediment into the voids of the coarser existing sediment may occur. Therefore, plantings-specific parameters apply to the introduction of fine sediment, as well as filter criteria. The analysis considers fine sediment with a maximum grain diameter of 2 mm (0.08 in, i.e., sand). Recommended threshold values in the threshold_values.xlsx workbook are:

	Critical dimensionless bed shear stress taux of τ*,cr

 SHArC - Working Principles

SHArC - Working Principles

	Introduction to Habitat Suitability evaluation

	Quick GUIde to habitat suitability evaluation

	Main window set-up and run

	Input: Physical Habitats for Fish

	Input: Combine methods (of habitat suitability Rasters)

	Input: Define computation boundaries

	Input: HHSI

	Input: Cover HSI

	Combine habitat suitability Rasters

	Calculate SHArea

	Output and application in river restoration projects

	Quit module and logfile

	Working principles

	Cover HSI: Substrate

	Cover HSI: Boulder

	Cover HSI: Cobble

	Cover HSI: Streamwood

	Cover HSI: Vegetation

	Cover HSI combination methods

	Usable habitat area calculation

	More about Physical Habitats and Modifying Fish.xlsx

Working principles[bookmark: heprin]

Cover HSI: Substrate[bookmark: subshsi]

A dmean Raster is needed in the RiverArchitect/01_Conditions/CONDITION/ folder. If this box is checked,
a substrate_hsi Raster is created in RiverArchitect/SHArC/HSI/CONDITION/. The applied Habitat Suitability Curves can be adapted by clicking on the Edit HSCs button.

Cover HSI: Boulder[bookmark: bouhsi]

A boulder shapefile containing polygons with boulder sizes (diameters) needs to be available in RiverArchitect/SHArC/Cover/CONDITION/. The polygons need to be manually delineated for the entire region of interest. The module will convert boulder size information into a Raster and retain boulders with a size larger than a threshold value. Areas, where the boulder presence covers more than 30% of the surface get assigned an HSI value of 0.5. Both the 30% surface ratio and the associated HSI of 0.5 can be changed for every Physical Habitat for fish species and lifestages.

Cover HSI: Cobble[bookmark: cobhsi]

A cobble Raster containing substrate sizes (cobble diameters) needs to be available in RiverArchitect/SHArC/HSI/CONDITION/. The module will evaluate the percentage of area that is covered with cobble larger than a threshold value (grain size). Areas, where the percentage area covers more than 30% of the surface get assigned an HSI value of 0.3. Both the 30% surface ratio and the associated HSI of 0.3 can be changed for every Physical Habitat for fish species and lifestages.

Cover HSI: Streamwood[bookmark: woohsi]

A streamwood shapefile containing polygons with single wood elements needs to be available in RiverArchitect/SHArC/HSI/CONDITION/. The module draws polygons with a user-defined radius around the streamwood polygons and
assigns a value of 1 to these polygons. The new polygons are converted into a Raster and an HSI value of 0.3 is assigned to 1-pixels. The user-defined radius and the associated HSI of 0.3 can be changed for every Physical Habitat for fish species and lifestages.

Cover HSI: Vegetation[bookmark: veghsi]

A plantings shapefile containing polygons with single plants needs to be available in RiverArchitect/SHArC/HSI/CONDITION/. The module draws polygons with a user-defined radius around the plant polygons and assigns a value of 1 to these polygons. The new polygons are converted into a Raster and an HSI value of 0.3 is assigned to 1/pixels. The user-defined radius and the associated HSI of 0.3 can be changed for every Physical Habitat for fish species and lifestages.

Cover HSI combination methods[bookmark: hecombinecov]

The cover Rasters are combined by selecting the maximum value of the superposition of applied cover types: covHSI = arcpy.sa.Float(arcpy.sa.CellStatistics(applied_covers, ”MAXIMUM”, ”DATA”)), where applied_covers is a list of arcpy.Raster()s of applied cover types.

Usable habitat area calculation[bookmark: hewuamethods]

The usable area is measured by converting cHSI Rasters to polygon shapefiles using arcpy.RasterToPolygon_conversion(cHSI, polygon_shp, ”NO_SIMPLIFY”). The area of single polygons is calculated by arcpy.CalculateGeometryAttributes_management(polygon_shp, geometry_property=[["F_AREA", "AREA"]], area_unit=self.area_unit). The polygon areas are summed up in a loop over the polygons (with arcpy.da.UpdateCursor(polygon_shp, ”F_AREA”)as cursor: for row in cursor: area += float (row[0])). The area variable contains the usable habitat area for every discharge-related cHSI Raster and it is eventually written in column G of CONDITION_FILI.xlsx.

 Seasonal Habitat Area Calculator (SHArC)

Seasonal Habitat Area Calculator (SHArC)

	Introduction to Habitat Suitability evaluation

	Quick GUIde to habitat suitability evaluation

	Main window set-up and run

	Input: Physical Habitats for Fish

	Input: Define computation boundaries

	Input: HHSI

	Input: Cover HSI

	Input: Combine methods (of habitat suitability Rasters)

	Combine habitat suitability Rasters

	Calculate SHArea

	Output and application in stream restoration projects

	Quit module and logfile

	Working principles

	Cover HSI: Substrate

	Cover HSI: Boulder

	Cover HSI: Cobble

	Cover HSI: Streamwood

	Cover HSI: Vegetation

	Cover HSI combination methods

	Usable habitat area calculation

	More about Physical Habitats and Modifying Fish.xlsx

Introduction to Habitat Suitability evaluation[bookmark: heintro]

The SHArC module creates habitat suitability index (HSI) Rasters for various fish species and combines multiple HSI Rasters into a composite habitat suitability index Raster (cHSI or CSI). The habitat suitability index ranges between 0.0 and 1.0, according to Bovee (1986) [https://pubs.er.usgs.gov/publication/70121265]. It uses a threshold value for defining valuable habitat, which is initially set to 0.5 (i.e., HSI values between 0.0 and 0.5 or NoData are considered as “non-habitat” and values between 0.5 and 1.0 correspond to valuable habitat).
A minimum of three normal discharges within a seasonal flow duration curve should be provided (e.g., the Q300, Q200 and Q100 denote the flows that are exceeded during 300, 200 and 100 days per year, respectively). The module’s HHSI (Hydraulic Habitat Suitability Index) Raster generator provides routines to produce seasonal flow duration curves from discharge series. The SHArC module uses the resulting seasonal flow exceedance probabilities that are associated with cHSI Rasters for summing up the surface where the cHSI is larger than the threshold value (of 0.5 by default). This surface corresponds to the Seasonal Habitat Area (SHArea) in [m2 per season] or [acres per season]. Note that seasonal refers to the Physical Habitat present during a user-defined fish-lifestage period (see definitions of Physical Habitats for fish-lifestage). The module writes relevant flows, exceedance properties and the SHArea to CONDITION-related spreadsheets in the SHArC/SHArea/ directory.

Note that the SHArC module has no own mapping function. cHSI Rasters may be mapped with the project assessment templates of the ProjectMaker module.

Quick GUIde to habitat suitability evaluation[bookmark: hequick]

Main window set-up and run[bookmark: hegui]

The below figure shows the SHArC GUI at start-up.

[image: guihe]

To begin a habitat evaluation as a function of SHArea, the module first requires a definition of relevant Physical Habitats for target fish species and lifestages that it reads from a workbook.
Second, hydraulic habitat suitability Rasters and related discharge exceedance probabilities need to be calculated. The latter step creates habitat conditions, which can now be selected. Once a habitat condition is selected, the next step combines flow depth and velocity habitat suitability Rasters. Finally, SHArea is computed based on combined habitat suitability Rasters, with or without cover.

Input: Physical Habitat for Fish[bookmark: hefish]

The Select Physical Habitat menu enables the definition of flow depth and velocity-dependent habitat suitability curves, as well as travel thresholds for use in the Stranding Risk module. The DEFINE FISH SPECIES menu entry opens a workbook called Fish.xlsx, which is located in RiverArchitect/.site_packages/templates/. The Fish.xlsx workbook contains the definition of fish species names (rows 2 to 4) and up to four lifestages per species. For every lifestage, a preference season and piece-wise linear habitat suitability curves can be entered. Moreover, the default workbook contains a global definition of aquatic habitat (All Aquatic), where a hydrologic year, season, flow depth, and/or velocity lifestage-like definition can be made. These lifestage-like definitions correspond to wetted area that may be considered for an entire hydrologic year, limited to a season, and/or pixels where a minimum flow depth (default: 0.001 m or ft) or velocity (default: 0.001 m/s or fps) is present. The All Aquatic habitat suitability curves assign a theoretic habitat suitability index of 1.0 to all wetted pixels (i.e., where the flow depth or velocity is larger than 0.001).

[image: hefish]

All definitions made in this workbook need to respect the default workbook structure:

	Season start in row 6 (DD-MMM, e.g., 15-Mar). Note that Office programs will automatically add a year, too. Just ignore the year added, because River Architect only reads the month and day.

	Season end in row 7 (DD-MMM, e.g., 15-Mar).

	Flow velocity u in row 9 to 36.

	Flow depth h in row 38 to 70.

	Substrate (grain size) D in row 72 to 79.

	Cover (minerals) in row 81 to 82. Min (in %) describes the minimum surface occupation of either Cobble or Boulder that is required to improve habitat by an HSI value.

	Cover (vegetative) in row 84 to 85. Rad. defines the radius around single Plants or Wood placements, where habitat improves by an HSI value.

	Habitat Suitability Index curves can be found in the scientific literature with the the following keywords: Habitat Suitability, Index, Curve, TARGET SPECIES (e.g., here [https://www.science.gov/topicpages/h/habitat+suitability+curves]).

	Fish lifestages must be named either spawning, fry, ammocoetes, juvenile, adult, hydrologic year, season, depth > x, velocity > x, or "rearing": 7. The lifestage names are currently hard-coded in the Fish class (RiverArchitect/.site_packages/riverpy/cFish.py) dictionary self.ls_col_add = {"spawning": 1, "fry": 3, "ammocoetes": 3, "juvenile": 5, "adult": 7, "hydrologic year": 1, "season": 3, "depth > x": 5, "velocity > x": 7, "rearing": 7} (see known issues). This dictionary can be changed for using other lifestage names and we are working on an improvement in later versions. Note that this dictionary defines the relative column numbers that are added to the column where the fish species name is defined (e.g., for name=Chinook Salmon, the start column is “C” and the spawning-column is “C+1”=”D”, while the “fry”-column is “C+3”=”F” and so on). For example, for adding a "rearing" lifestage for Chinook salmon (one of the default species), "rearing" must replace "adult", which is in the relative 7th (col.”C”+7 = “J” column) of the Chinook salmon species. In fact, the species names are written to merged cells that cover two columns (see below table), but River Architect only reads the numeric value from self.ls_col_add to access curve data. Thus, all lifestages must be defined in self.ls_col_add, as relative column number to the 0-column of every Fish species. The following overview table of merged cells shows where to put what lifestage relative to the 0-column (**REMIND other lifestages than these required modifications of self.ls_col_add in RiverArchitect/.site_packages/riverpy/cFish.py):

	LIFESTAGE
	REL. COl. NO.
	EXAMPLE FOR CHINOOK SALMON

	spawning
	1
	C-D

	fry
	3
	E-F

	ammocoetes
	3
	E-F

	juvenile
	5
	G-H

	adult
	7
	I-J

	rearing
	7
	I-J

	hydrologic year
	1
	C-D (example: All Aquatic AI-AJ)

	season
	3
	E-F (example: All Aquatic AK-AL)

	depth > x
	5
	G-H (example: All Aquatic AM-AN)

	velocity > x
	7
	I-J (example: All Aquatic AO-AP)

The Season start and Season end dates are important in the flow duration generation for HHSI curves. For the consideration of entire hydrological years (or water years [https://en.wikipedia.org/wiki/Water_year]), define Season start as 1-Oct and Season end as 30-Sep (in the United States and Switzerland, in Germany from 1-Nov to 31-Oct according to the definition of an Abflussjahr in the DIN 4049 [https://www.din.de/en/getting-involved/standards-committees/naw/standards/wdc-beuth:din21:1987523]). Hydrological/water years are defined based on the assumption that water resources are smallest in fall. Fish seasons are relevant for habitat assessment because fish grows and a lifestage (e.g., juvenile) may not be relevant for the entire year (that means: possibly not use the entire year).

Ensure the application of the correct unit system; the drop-down menu in the Fish.xlsx workbook automatically sets the units of flow velocity u, flow depth h, grain size D, and delineation radius Rad around polygons. The radius Rad describes the “effect” perimeter of boulders, plants and/or wood that is drawn around the delineated polygons.

The base scenario provides habitat suitability curves for four sample fish species. More fish species can easily be appended by copy-pasting the template frame (area in thick borders in the template sheet) after the last defined fish species. For example, if another fish species is added to the base scenario, cells C2 to J85 from the template sheet are copied and pasted at cell AI2 in the fish sheet. However, the number of lifestages per fish species and the above-stated rows need
to be respected when entering piece-wise linear habitat suitability functions. The U.S. Forest Service provides data [http://www.fsl.orst.edu/geowater/FX3/help/SwimData/swimtable.htm] that may help define additional fish species (especially for Stranding Risk analysis).

The structure of Fish.xlsx must not be modified (inserting or deleting rows or columns) unless the module’s source code is also changed (not recommended). If the structure is changed anyway, the module needs to be modified as explained in the code section.

Note that any relevant species-lifestage needs to have at least one entry for the velocity habitat suitability curve, as the module uses this first data cell in every column to verify if it contains data or not. For example, if a substrate habitat suitability curve is given, but the velocity habitat suitability curve is left blank, the concerned lifestage will not be considered relevant.

River Architect uses the piece-wise linear curves of habitat suitability indices to interpolate the HSI value of Raster pixels. For example, if a velocity Raster’s pixel has a value of 0.51 (fps or m/s), the module looks up the HSI values related to the next smaller or equal provided value (e.g., 0.5 fps or m/s) and the next higher value (e.g., 0.6 fps or m/s) and linearly interpolates the habitat suitability index for 0.51 (fps or m/s). Thus, the numeric expression to determine the linear function piece in this example is if 0.5<= 0.51 < 0.6: interpolate(). The calculation function is called nested_con_raster_calc(ras, curve_data), which is implemented in the HHSI() class (SHArC/cHSI.py), where ras is a depth or velocity GeoTIFF Raster and curve_data (type: nested LIST) are the linear break points defined in Fish.xlsx. The Raster calculation expression is (simplified code snippet):

__ras__ = [ras * 0] # initial raster assignment
index = 0
i_par_prev = 0.0
i_hsi_prev = curve_data[1][0]
for i_par in curve_data[0]:
	__ras__.append(Float(Con((Float(ras) >= Float(i_par_prev)) & (Float(ras) < Float(i_par)), (Float(i_hsi_prev) + ((Float(ras) - Float(i_par_prev)) / (Float(i_par) - Float(i_par_prev)) * Float(curve_data[1][index] - i_hsi_prev))), Float(0.0))))
	i_hsi_prev = curve_data[1][index]
	i_par_prev = i_par
	index += 1
return Float(CellStatistics(__ras__, "SUM", "DATA"))

Input: Define computation boundaries[bookmark: hebound]

A boundary shapefile (polygon) can be selected to limit the calculation extents and assessment of the Annually Usable habitat Area SHArea. Typically, that shapefile should be stored in RiverArchitect/01_Conditions/CONDITION/boundary.shp/.tif (or RiverArchitect/ProjectMaker/ProjectName/Geodata/Shapefiles/ProjectArea.shp) and it should contain one valid polygon with an Id field value of 1 for that rectangle in the Attribute table.

Input: HHSI[bookmark: hemakehsi]

Before habitat suitability Rasters can be calculated, at least one fish species/lifestage needs to be selected (multiple selections are possible) because SHArC will only use hydraulic Rasters that are relevant to the selected Physical Habitat for a fish-lifestage (see Season start and Season end in Fish.xlsx).

With at least one fish species-lifestage selected, HSI Rasters can be generated by clicking on the Generate HSI Rasters menu and Flow depth and velocity HSI. A new window opens and first asks for a discharge (or flow) duration curve:

[image: hefish]

A flow duration curve for a preferred Physical Habitat of target fish-lifestages can be generated from any discharge series within the Get Started [https://github.com/RiverArchitect/RA_wiki/Signposts] module, which produces correctly formatted flow duration workbooks in RiverArchitect/00_Flows/CONDITION/flow_duration_FILI.xlsx. The flow duration curve generation only considers discharges observed within the seasons defined in RiverArchitect/.site_packages/templates/Fish.xlsx. For the consideration of completed hydrology years, define Season start as 1-Oct and Season end as 30-Sep (see above discussion).

In the process of HHSI Raster generation, the produced flow duration curves can (must) be used by clicking the i) Select flow duration curve (.XLSX) button, which button opens the file explorer in RiverArchitect/00_Flows/.
The flow duration workbook must list discharges in column A, starting at row 2 in descending order. The discharges need to be positive float numbers. The associated exceedance durations (%) are stated in column C.

Second, hydraulic habitat conditions need to be selected. River Architect looks up available hydraulic habitat conditions in RiverArchitect/01_Conditions/. After highlighting (click) one of the available hydraulic conditions, a click on the Select button generates a workbook in RiverArchitect/SHArC/SHArea/ with the name CONDITION_FILI.xlsx for each previously selected fish. The FILI string abbreviates the selected fish species and lifestage, where FI represents the first two letters of the fish species and LI the first two letters of the fish lifestage. Existing workbooks for the same condition and fish are renamed (old gets appended to the file name). Older ...old.xlsx workbooks are overwritten.

The generated CONDITION_FILI.xlsx can be opened by clicking on the Optional: View discharge dependency file button. If opened, close this workbook before continuing. Until here, only the columns B to E should contain values, which constitute the plotted flow duration curve.

Finally, a click on Run (generate habitat condition) launches the calculation of hydraulic habitat suitability index (HHSI) Rasters, which are created in RiverArchitect/SHArC/HSI/CONDITION/. The window starts flashing when the calculation finished. For returning to the main window (it partially freezes while the HHSI window is open), click on the RETURN button.
The resulting depth-HSI Rasters are named dsi_FILIqqqqqq and velocity-HSI Rasters are named vsi_FILIqqqqqq. The qqqqqq string refers to the discharge that is derived from the name of flow depth Rasters stored in RiverArchitect/01_Conditions/CONDITION/. Please note, that the maximum discharge that can be handled is 999999 cfs or 999999 m3/s because of the maximum length of Raster file names (if GRID Rasters are used).

Input: Cover HSI[bookmark: hemakecovhsi]

As before, at least one Physical Habitat for fish species/lifestage needs to be selected (multiple selections are possible). The cover HSI Raster generation can be limited to a user-defined flow region by selecting one of the hQQQQQQ Raster names in the 2) Define flow region frame. However, the later combination of the cover HSI Rasters with the HHSI (hydraulic HSI) Rasters will automatically limit the usable habitat area to wetted pixels only. Thus, the most pertinent choice here is selecting all terrain. Click on Confirm selection to do so.

Relevant cover types can be selected by checking the according checkboxes, where geofiles are required to be stored in
RiverArchitect/01_Conditions/CONDITION/ apply the cover types:

	Substrate: A dmean (S.I. /metric units) or dmean_ft (U.S. customary units) Raster is required (see Signposts).

	Boulders: A boulders.shp polygon shapefile is required; the polygons delineating boulders need to have a Short Integer-type field called cover in the (Attributes table) and the cover field value of polygons is 1.

	Cobbles: A dmean (S.I. /metric units) or dmean_ft (U.S. customary units) Raster is required (see Signposts). Cobble is defined, where the dmean... Raster indicates grain sizes between 0.064 m and 0.256 m.

	Plants: A plants.shp polygon shapefile is required; the polygons delineating plants need to have a Short Integer-type field called cover in the (Attributes table) and the cover field value of polygons is 1.

	Wood: A wood.shp polygon shapefile is required; the polygons delineating woods need to have a Short Integer-type field called cover in the (Attributes table) and the cover field value of polygons is 1.

The geofiles are used with the habitat suitability (curve) definitions in the Fish.xlsx workbook (tab fish), which is located in RiverArchitect/.site_packages/templates/.

HINT: The applicable cover types are limited to the terms “Substrate”, “Boulders”, “Cobbles”, “Plants”, and “Wood”.
Bridge piers or other structural turbulence objects may constitute other cover types that are not explicitly implemented in the SHArC module. However, may cover types can be associated with similar effects as the implemented cover types. Thus, other cover types can be added as polygons in the shapefiles for “Boulders”, “Plants”, or “Wood” cover types.

Input: Combine methods (of habitat suitability Rasters)[bookmark: hecombine]

The module provides the options of either using the geometric mean or the product to combine depth and velocity Rasters (and eventually cover Rasters). The following formulae are implemented to combine a depth HSI Raster DHSI with a velocity HSI Raster VHSI to a cHSI Raster if no cover applies:

Geometric mean: cHSI = (DHSI · VHSI)1/2

Product: cHSI = DHSI · VHSI

If a cover HSI Raster covHSI is used, the following formulae apply:

Geometric mean: cHSI = (DHSI · VHSI · covHSI)1/3

Product: cHSI = DHSI · VHSI · covHSI

The cover HSI Raster covHSI represents the maximum pixel values of applied cover types.

Combine habitat suitability Rasters[bookmark: herunchsi]

Back in the main window, select one available habitat condition (hydraulic either with or without cover) and confirm the selection. The available habitat conditions refer to the conditions created with the Make HSI Rasters routines. Confirming the selection activates the Combine HSI Rasters ... buttons for launching the combination of HSI Rasters. The HSI Rasters can be combined either using the geometric mean or as their product by (un-)checking one of the checkboxes above the Combine HSI Rasters ... buttons. The default combine method is Geometric mean.

Two combination buttons are available: (1) pure hydraulic and (2) hydraulic and cover. Additional habitat in terms of turbulent eddies created by cobbles, boulders, submerged plants, and streamwood is not well determined by 2D numerical models. Cover adds additional habitat as a function of the relative cobble or boulder surface and the proximity of plants or streamwood. This method values artificially placed cobbles, boulders, submerged plants and streamwood in stream restoration projects. Cover delineation may require considerable efforts in terms of drawing polygons around stream restoration elements.

CSI or cHSI Rasters are created in RiverArchitect/SHArC/CHSI/CONDITION/.

Calculate SHArea[bookmark: herunSHArea]

The Run Seasonal Habitat Area Caluclator - SHArC button launches the calculation of usable SHArea based on the combined habitat suitability index (cHSI). Usable (habitat) area is defined as the surface where cHSI (or CSI) pixel values are larger than the SHArea threshold θ. SHArea is defined as the sum of usable habitat areas of cHSI of relevant discharges multiplied with the relative presence (pQk). Relevant discharges occur every year during the Physical Habitat (fish-lifestage) presence season that is defined by the Season start and Season end tags in Fish.xlsx. Thus, SHArea as the sum of discharge-related usable habitat area is:

SHArea = ΣQk [Σpx({if cHSI(px) > θ}· Apx)· p(Qk)]

where px denotes “pixel” and Apx is the size of a pixel in m² (or ft²). By default, this threshold value θ is 0.5 (i.e., the routine sums up the surface of pixels where the cHSI is larger than 0.5). The threshold value can be changed by clicking on the Set SHArea threshold ... button. The expression {if cHSI(px) > θ} is 1 if the cHSI value of a pixel is higher than θ and it is 0 if the cHSI value of a pixel is smaller than θ. pQk denotes the relative seasonal presence of a discretized discharge Qk that is associated with a set of hydraulic Rasters (flow depth and velocity). River Architect converts usable habitat area rasters to polygon shapefiles and adds an AREA field to the shapefiles where Polygon areas are calculated using arcpy.CalculateGeometryAttributes_management(shp_name, geometry_property=[["F_AREA", "AREA"]], area_unit=user_area_unit); where shp_nameis a temporary shapefile and user_area_unitis the user-defined unit system (US customary or metric). The resulting discharge-specific area is written to a spreadsheet located in SHArC/SHArea/CONDITION_sharea_...xlsx.
Note: For specific project, intermediate area calculation results are written to workbooks when SHArea is calculated within the Project Maker module.

The below figure illustrates the SHArea integration scheme based on the application of four discharges (1000, 2000, 3000, and 4000 m3/s or cfs) of an Physical Habitat for a fish-lifestage season.

[image: SHAreaint]

Launch the SHArea calculation by clicking on Run Seasonal Habitat Area Calculator - SHArC. The resulting workbooks will be written to RiverArchitect/SHArC/SHArea/CONDITION_sharea_FILI.xlsx. The SHArC routine fills column F in CONDITION_sharea_FILI.xlsx, which automatically calculates column G: Area per discharge. Thus, the SHArea value in cell J2 is the sum of column G.
CHSI Rasters with relevant information for usable (wetted / habitat) area will be stored in RiverArchitect/SHArC/SHArea/Rasters_CONDITION/. The Raster statistics correspond to the numbers written to column F in RiverArchitect/SHArC/SHArea/CONDITION_sharea_FILI.xlsx.

Q - Area Analysis[bookmark: heqa]

The time evolution or (interpolated) habitat area associated with a discharge provide insights into the ecological efficiency of a habitat enhancement measures. The SHArC module can generate interpolated discharge-usable habitat area curves even for discharges that were not numerically modeled with a 2D hydrodynamic simulation. A click on the Discharge - Physical Habitat Area Curve or Time series - Physical Habitat Area button generates habitat area graphs as a function of all discharges of a flow duration curve or a discharge time series, respectively.

For flow duration curves, by default, SHArC uses the discharge duration workbook flow_duration_FILI.xlsx associated with the habitat CONDITION in RiverArchitect/00_Flows/CONDITION/. This behavior can be changed by checking the Use other flow duration curve box. The resulting Discharge - Physical Habitat Area Curve will be produced in SHArC/SHArea/CONDITION_QvsA_FILI_stats.xlsx that contains the following diagram:

[image: hefish]

The flow time series calculation will ask for a workbook with mean daily discharges, similar to the Get Started [https://github.com/RiverArchitect/RA_wiki/Signposts] module. The time series workbook must be organized as follows:

	The file ending must be .xlsx

	Column A must contain dates, where

	row 1 is the header (i.e., A1 = "Date"),

	row 2 indicates the date units (i.e., A2 = "(DD-MM-YY)"), and

	date series must be entered from row 3 onward (i.e., dates in the format A3 = 5-Sep-03 or A4 = 9/5/2003).

	Column B must contain mean daily flows, where

	row 1 is the header (i.e., B1 = "Mean daily"),

	row 2 indicates the date units (i.e., B2 = "(CFS)" or `B2 = “(CMS)”), and

	mean daily flows must be entered from row 3 onward (i.e., dates in the format B3 = 59.3 or B4 = 79).

The resulting Time series - Physical Habitat Area will be produced in SHArC/SHArea/CONDITION_QvsA_FILI_time.xlsx that contains the following diagram:

[image: hefish]

Output and application in riverscape habitat enhancement projects[bookmark: heoutput]

The RiverArchitect/SHArC/SHArea/CONDITION_FILI.xlsx workbook contains the key outputs of this module. The usable habitat area, related to analyzed discharges, in column G and their sum (SHArea) in cell J2 are important figures for comparing two situations (CONDITIONs).

For example, a relevant question can be “What was the annually usable habitat area for juvenile Chinook salmon in the year 2008 compared with 2014?” Comparing both the SHArea in 2008_sharea_chju.xlsx and the SHArea in 2014_sharea_chju.xlsx answers the question.

Another relevant question may be “How much did terraforming increase SHArea?”. To answer this question, the habitat conditions of a (hydraulic) CONDITION need to be evaluated based on 2D hydrodynamic model outputs for multiple discharges within the annual flow duration curve. Then, layer 1 terraforming features (see Signposts [https://github.com/RiverArchitect/RA_wiki/Signposts] and the ModifyTerrain [https://github.com/RiverArchitect/RA_wiki/ModifyTerrain] module) need to be implemented into the DEM of the CONDITION. The 2D hydrodynamic model needs to be re-run using the modified DEM and the same set of multiple annual flow duration discharges. Based on the sets of hydraulic Rasters (flow depth and velocity), the SHArC module can compute the SHArea for both conditions and selected fish species (e.g., SHArea of a 2014 DEM for juvenile Chinook salmon is originally calculated in 2014_sharea_chju.xlsx and the SHArea of the modified (terraformed) 2014 DEM will be contained in 2014_lyr10_sharea_chju.xlsx). Comparing the J2 cells of both workbooks reveals the net gain in SHArea. When multiple restoration variants have to be compared, the net gain in SHArea of all variants can be vetted against construction costs to obtain a price in terms of US$ per m2 (or acres) gained in SHArea.

Quit module and logfile[bookmark: hequit]

The best option to quit the module is the Close dropdown menu if no background processes are going on (see terminal messages), where also the processing logfile.log can (should) be opened and reviewed for any error messages.

 SHArC - Code modification

SHArC - Code modification

	Introduction to Habitat Suitability evaluation

	Quick GUIde to habitat suitability evaluation

	Main window set-up and run

	Input: Physical Habitats and Fish

	Input: Combine methods (of habitat suitability Rasters)

	Input: Define computation boundaries

	Input: HHSI

	Input: Cover HSI

	Combine habitat suitability Rasters

	Calculate SHArea

	Output and application in river restoration projects

	Quit module and logfile

	Working principles

	Cover HSI: Substrate

	Cover HSI: Boulder

	Cover HSI: Cobble

	Cover HSI: Streamwood

	Cover HSI: Vegetation

	Cover HSI combination methods

	Usable habitat area calculation

	More about Physical Habitats and Modifying Fish.xlsx

Fish species and lifestages

See input defintions.

Changing the structure of Fish.xlsx[bookmark: hecode]

The Fish.xlsx workbook is read by the Fish class stored in RiverArchitect/.site_packages/riverpy/cFish.py. The start rows for reading velocity, depth, substrate, mineral cover and vegetation cover habitat suitability curves from the workbook are hard-coded in the self.parameter_rows dictionary of the Fish class. If rows were deleted or inserted, self.parameter_rows needs to be adapted.

	"u": row - row needs to correspond to the row number where the flow velocity-related habitat suitability curve starts.

	"h": row - row needs to correspond to the row number where the flow depth-related habitat suitability curve starts.

	"substrate": row - row needs to correspond to the row number where the substrate-related (D) habitat suitability curve starts.

	"cov_min": row - row needs to correspond to the row number where the mineral cover (cobbles and boulders)-related habitat suitability curve starts.

	"cov_veg": row - row needs to correspond to the row number where the vegetation cover (plants and wood)-related habitat suitability curve starts.

The insertion or deletion of rows can be easily and robustly adapted by changing the above dictionary items. However, changing or deleting columns is more complex because the module is coded in a manner that it can theoretically read an infinite number of fish species, but always limited to the same number of lifestages.
Preferably omit non-relevant lifestages (do not put any number). Otherwise, change the code where read columns are relative incremental increases of numeric column values, starting at self.species_row = 2. For example, the "spawning" lifestage is at first place, and therefore, its relative column is 1. The "fry" lifestage is in second place but it needs to jump over an extra column. Therefore, the relative column of "fry" is 3, the relative column of "juvenile" is 5, and the relative column of "adult" is 7. If another lifestage is used for any fish species, it needs to match one of the before mentioned stored in the self.ls_col_add dictionary of the Fish class. For example, the base scenario uses Lamprey fish and an "ammocoetes" lifestage instead of "fry". Therefore, the entry {"ammocoetes": 3} needs to be added to self.ls_col_add.
Currently, the following lifestages can be recognized: self.ls_col_add = {"spawning": 1, "fry": 3, "ammocoetes": 3, "juvenile": 5, "adult": 7, "hydrologic year": 1, "season": 3, "depth > x": 5, "velocity > x": 7}.
The hard-coded lifestage identification represents a known issue and we are working on improving the freedom in naming lifestages.

_images/connect_vel_condition.png

_images/flowchart.png
START

TenainAssj JOMODEL
essment

v TERRAFORMING PLANTINGS &

Get Started Get Started NATURE-BASED

Creates Condition ¥ Creates Condifon | ENGINEERING
(original DEM) (New DEM)

Lifespans Morphology Ecohydraulics
Survival River Builder Physical
thresholds | Threshold-based | Habitats (Fish) |

I_-_I

CAD
d(awiug

2OMODEL

Lifespans Ecohydraulics
Survival Physical
thresholds Habitats (Fish)

New Terrain &
Hydraulics

Volume Assessment
Original DEM »
vs. New DEM

b A 4

Llfespan Habitat | Connec
maps Quality

I_*

ProjectMaker ‘

(G LEGEND

Informs

Produces l

Expert | River
assess- Architect
ment | Module

Existing Project
Plants Area

Construction
Plans

_images/computation_extents_illu.jpg
| Calculated value required for coherent sections | Allowed for modification

Delineation source: D:/Type optional path here
DO NOT DELEATE, SHIFT OR INSERT COLUMNS, ROWS OR CELLS
Reach Extents

Full name Short name (max. 3)| Min x (ft) Max x (ft) Min v (ft) Max y (ft)
Englebright Dam edr 6,765,934.69 | 6,768,868.72 2,210,191.48 2,213,767.87
Narrows nrw 6,761,523.91 | 6,765,934.69 2,207,714.19 2,211,198.43
Timbuctoo Bend tor 6,750,790.91 | 6,761,523.91 2,206,187.69 2,212,612.56
Parks Bar pbr 6,729,671.96 | 6,750,790.91 2,205,056.93 2,209,140.12
Dry Creek drc 6,719,171.09 | 6,729,671.96 2,202,506.44 2,207,801.58
Daguerre Point Dam dpd 6,704,934.98 | 6,719,171.09 2,193,739.08 2,203,044.63
Hallwood hwr 6,685,438.45 | 6,704,934.98 2,182,207.83 2,195,596.72
Marysville mry 6,675,634.63 | 6,686,780.47 2,171,798.11 2,182,207 83

USAGE: After editing such fields savethisfile andclickon "RE-BUILD MENU"(GUI Mod. Reaches)

_images/connect_graph.png
Velocity
(vr=06mis)

Apply depthivelocity
thresholds and calculate costs

—

Weighted Digraph
For Fish Travel

<

Find least-cost paths
(Dijkstra's algorithm)

_images/threshold_values_illu.png
TERRAFORMING

VEGETATION PLANTINGS

BIOENGINEERING (OTHER)

CONNECTVITY

TYPE

uNIT

Feature Name

Feature ID

(str)

(str)

text

text

Backwater Widen

Grading

Side cavities| ~ Side
channels

Box Elder

box

Cottonwood

cot

‘White Alder

whi

Willow

wil

‘Streamwood

Grains /
Boulders

Other bioeng.

GRAVEL AUGNENTATION

SOIL CAPILARITY

Gravel: In

Gravel: Out

Incorporation of
fine sediment

[Cracal amensionless bed shear siress

0.047

0.047

0.047

0.047

0.047

0.047

0.047

0.047

0.030

Deph o groundwaer (min)
Deph o groundwaer (max)

70
120

10
70

10
70

10
70

10
70

120

10
100

Detrended DEM (min)
Derended DEM (max)

170
20

Fiow deph
Fiow veocty

10

21

21

34

Froude number

100

Grain sz

0.00667

Design map frequency treshod

50

100

200

100

10

Morphological Urs: avoidance
Morphological Uris: relevance.

Morphological Uns: appicaton
(0= avoidance, 1 = relevance)

\gggr\srrrrr\

na na
agriptain, backs bank, floodpiain, h
1 1

bedrock, hil

na
‘bank cutban

chute, fast g1 agriplain, bac

[satey facor

130

[Terrain siope:

020

[Topograptic change: inverse retevance:
Topograptic change: # rae
[Topograptic change: scour rae.

030
030

TRUE

030

TRUE TRUE
100 100

[Aopy Liespan Miapping
Aopy Design apping

EE[zZE[EE|= 22ZEE[EEE 2352

ool
L
L

‘ool

bool

TRUE FALSE
TRUE TRUE

TRUE
FALSE

FALSE TRUE
TRUE FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
FALSE

TRUE
TRUE

TRUE
TRUE

TRUE
TRUE

TRUE
TRUE

TRUE
TRUE

s

[DO NOT DELETE, SHIFT, COPY OR INSERT CELLS, ROWS AND COLUMNS |

[CHOOSE UN