
River Architect
Release latest

River Architect Team

Nov 12, 2021

CONTENTS

1 Installation 5
1.1 Installation with Git Bash/GUI . 5
1.2 Update with Git Bash/GUI (re- pull) . 6
1.3 Launch River Architect . 6

2 Package structure, requirements and logfiles 9
2.1 File structure . 9
2.2 Program environment setup and batchfile modification . 13
2.3 Requirements and dependencies . 14
2.4 Logfiles . 15

3 Get Started and Signposts 17

4 Get Started 19
4.1 Create New Condition . 20
4.2 Populate Condition . 21
4.3 Create a spatial subset of a Condition . 24
4.4 Analyze Flows . 24
4.5 Generate Input File(s) (.inp) . 26
4.6 Map extent input definition files . 27
4.7 Align Input Rasters . 27

5 Geofile (Raster) conventions 29

6 Manual input data preparation 31

7 Feature lifespan and design assessment 33

8 Introduction to lifespan and design mapping 35

9 Quick GUIde to lifespan and design maps 37
9.1 Interface and choice of features . 37
9.2 Input: Condition and preparation of Rasters . 38
9.3 Input: The threshold values workbook threshold_values.xlsx and calculation hierarchy . . . 38
9.4 Input: Optional arguments . 41
9.5 Run . 42
9.6 Alternative run options . 42
9.7 Output . 44

10 Maximum Lifespan Assessment (MaxLifespan) 47

i

11 Introduction to maxium (best) lifespan mapping 49

12 Quick GUIde to maximum lifespan maps 51
12.1 Main window set-up and run . 51
12.2 Alternative run options . 52
12.3 Output . 53
12.4 Quit module and logfiles . 53

13 Working principle 55

14 Code modification: Add feature sets for maximum lifespan maps 57

15 River Reach Definitions 59

16 Modify Terrain (terraforming) 61

17 Introduction 63

18 Quick GUIde to terrain modifications 65
18.1 Main window set-up and run . 65
18.2 Input: Set Reaches . 67
18.3 Input: Set Condition . 67

19 Threshold value-based terraforming: Widening and Grading options 69
19.1 Run . 69
19.2 Alternative run options . 69
19.3 Raster Output . 70
19.4 Mapping . 70
19.5 Working principles . 70
19.6 Code modification: Add routines for automated DEM modification 71

20 River Builder 73

21 River Builder 75

22 Introduction to River Builder 77

23 Create Input Files 79

24 Select Input Files 85

25 Run River Builder within River Architect 87

26 Output 89

27 About 91

28 Volume Change Assessment 93

29 Introduction 95

30 Quick GUIde to Volume Assessment 97
30.1 Main window set-up and run . 97
30.2 Input: Set Reaches . 99
30.3 Mapping . 99
30.4 Run . 100
30.5 Output . 100

ii

31 Working principles 101

32 Code modification: Change sensitivity threshold (lod) for terrain modification detection 103

33 Stranding Risk Assessment 105

34 Introduction to Stranding Risk Module 107

35 Quick GUIde to Stranding Risk Assessment 109

36 Defining Travel Thresholds 113

37 Methodology 115
37.1 Interpolating Hydraulic Rasters . 115
37.2 Escape Route Calculations . 116
37.3 Calculating Disconnected Habitat Area . 118
37.4 Determining Qdisconnect . 118
37.5 Disconnection Frequencies . 119
37.6 Estimating Ramping Rates . 119

38 References 121

39 Project Maker 123

40 Introduction to the Project Maker module 125

41 Quick GUIde to a project assessment 127
41.1 Prerequisites . 127
41.2 Main window set-up and run . 128
41.3 Input: Variables and automatically generated files . 129
41.4 Input: Project Area Polygon shapefile . 129
41.5 Input: Plantings shapefiles . 130

42 Cost quantity assessment and the cost master workbook 133
42.1 Terraforming . 133
42.2 Vegetation plantings and supporting features . 134
42.3 Stabilize terrain . 135
42.4 Manual placement of nature-based engineering features . 135
42.5 Other civil engineering works . 136
42.6 Markups, permitting, and other costs . 136

43 Mapping of construction elements 137

44 Ecological benefit asessment (Calculate SHArea) 139
44.1 Additional input and requirements . 139
44.2 Run SHArea calculation . 140
44.3 Output . 140

45 River Architect Tools 141

46 Main Tool scripts 143

47 Class and Function files 145

48 Error messages and Troubleshooting 147

49 Known issues 149

iii

50 How to trace Error and Warning messages 151

51 Error and Warning message generation 153

52 Error messages 155

53 Warning messages 181

54 DISCLAIMER 189

55 DEVELOPMENT 191

56 Add a module to River Architect 193
56.1 Working with the module template . 194
56.2 Binding a new tab (module) to the River Architect master GUI . 197

57 Full list of folders and files 199

iv

River Architect, Release latest

Please refer to the Installation section to learn how to install, update, and launch River Architect.

River Architect is an `open-access, peer-reviewed (Journal SoftwareX)
<https://doi.org/10.1016/j.softx.2020.100438>`__ and Python3-based software for the GIS-based planning
of habitat enhancing river design features regarding their lifespans, parametric characteristics, optimum
placement in the terrain, and ecological benefits. The main graphical user interface (GUI) provides modules
for generating lifespan and design maps, terrain modification (terraforming), assessment of digital elevation
models (DEM), habitat assets including fish stranding risk, and project cost-benefits.

River Architect invites to analyses and modifications of the longevity and ecological quality of riverscapes. Different
planning bases (“conditions”) can be easily created using an introductory module called GetStarted. Lifespan, Mor-
phology (Terraforming) and Ecohydraulic assessments can then be created based on the Conditions, including the
creation of project plans and cost tables with a Project Maker module.

Lifespan maps indicate the expected longevity of restoration features as a function of terrain change, morphological
characteristics, and 2D hydrodynamic modeling results. Design maps are a side product of lifespan and design
mapping and indicate required feature dimensions for stability, such as the minimum required size of angular boulders
to avoid their mobilization during floods (more information in Schwindt et al.2019). Best lifespan maps result from
the comparison of lifespan and design maps of multiple restoration features and assign features with the highest
longevity to each pixel of a raster. Thus, the Max Lifespan module assess optimum features as a function of highest
lifespans among comparable feature groups such as terraforming or vegetation planting species.

Morphology (Terraforming) includes routines to Modify Terrain for river restoration purposes. Currently, two ter-
rain modification algorithms are implemented: (1) Threshold value-based terrain modifications in terms of grading or
widening / broaden rivers for riparian forest establishment; and (2) River Builder for the creation of synthetic river
valley. A Volume Assessment module can compare an original (pre-project or pre-terraforming application) and a
modified DEM (“with implementation” or post-feature application) to determine required earth movement (terraform-
ing volumes) works.

Ecohydraulics assessments include the evaluation of the ecohydraulic state and connectivity of riverscapes. The Habi-
tat Area (Seasonal Habitat Area Calculator) module applies user-defined flows (discharges) for the spatial evaluation
of the habitat suitability index (HSI) in terms of Seasonal Habitat Area (SHArea). The hydraulic habitat suitability
results from 2D hydrodynamic numerical model outputs of flow depth and velocity. Also, a “cover” option can be used
to assess ecohydraulic effects of cobble, boulder, vegetation, and streamwood. The Stranding Risk module provides
insights into the connection of wetted areas on floodplains and how these may be improved to enhance the survivorship
of fry / juvenile fish.

The Project Maker module creates preliminary construction plans and evaluates the costs for gain in usable habitat
for target fish species and lifestages. A unit cost workbook provides relevant costs and the gain in usable habitat area
results from the SHArC module.

A set of Tools provides Python console scripts that are under development and will be implemented in future versions
of the River Architect GUI.

River Architect represents a comprehensive tool for state-of-the-art planning of ecologic river modifications. The
integrated application of River Architect to habitat enhancing project planning is illustrated in the following flowchart.
The modules and tool-scripts can also be individually applied for other purposes than suggested in the flowchart.

The procedure of project design following the flowchart involves the following steps:

1. Generate a terrain elevation model (DEM).

2. Determine relevant discharges for 2D hydrodynamic modeling:

• At least three annual discharges describing the “most of the time” - situation of the considered river for
habitat evaluation assessments. River Architect’s Tools contain scripts for generating flow duration curves
from gaging station data.

CONTENTS 1

https://www.sciencedirect.com/science/article/pii/S0301479718312751
Tools

River Architect, Release latest

Fig. 1: flowchart

2 CONTENTS

River Architect, Release latest

• At least three flood discharges against which potential restoration features have to withstand (determine
lifespan intersects).

3. Run a 2D hydrodynamic model (steady) with all determined discharges to generate hydraulic snap-shots of the
river.

4. Create a Condition using the GetStarted module. The Condition should include GeoTIFFs of the initial (existing
or pre-project) river state:

• Detrended digital elevation model (DEM);

• Flow depth and velocity for multiple discharges Rasters from 2D hydrodynamic modeling (see Signposts);

• Substrate map (dmean for metric or dmean_ft for U.S. customary units); relevant methods are described
in Detert et al. (2018); Stähly et al. (2017); and [Jackson et al. (2013)];

• Datasets that can be used to assess design feature stability, such as side channel design criteria;

• Topographic change Rasters (Topographic Change Detection or DEM differencing according to Wyrick
and Pasternack 2016);

• Depth to water table Raster (d2w);

• Morphological unit Raster (see Wyrick and Pasternack (2014)).

5. Apply the LifespanDesign module to framework (terraforming) features.

6. Lifespan and Design maps, as well as expert assessment, serve for the identification of relevant framework
(terraforming) features.

7. Iterative terraforming (if relevant):

• Use the ModifyTerrain module for creating synthetic river valley with River Builder; or apply threshold
value-based terrain grading or broadening of the river bed. Please note that both routines require post-
processing with computer-aided design (translation into real-world coordinates and/or edge smoothing).

• Re-compile the flow depth and velocity maps (re-run 2D model) with the modified DEM.

• Verify the suitability of the modified DEM (e.g., barrier height to ensure flood safety and habitat suitability
with the SHArC module); if the verification show weaknesses adapt the terraforming and re-compile the
flow depth and velocity maps until terraforming is satisfactory.

• Use the VolumeAssessment module (Morphology tab) to compare pre- (initial) and post-project (modified)
DEMs for determining required excavation and fill volumes.

8. Apply the LifespanDesign module to vegetation plantings and (other) bioengineering features based on the
terraformed DEM (or the original / initial DEM if no terraforming applies).

9. Use the MaxLifespan module to identify best performing (highest lifespan) vegetation plantings and (other)
bioengineering features.

10. If the soils are too coarse (i.e., the capillarity is not high enough to enable plant root growth), apply the connec-
tivity feature “incorporate fine sediment in soils”.

11. If gravel augmentation methods are applicable: Consecutively apply the LifespanDesign and MaxLifespan mod-
ules to connectivity features to foster self-sustaining, artificially created ecomorphological patterns within the
terraforming process. If gravel is added in-stream, re-run the numerical model for the assessment of gravel sta-
bility with the LifespanDesign module and the combined habitat suitability with the SHArC module to compare
the Seasonal Habitat Area (SHArea) before and after enhancement of Physical Habitats for target fish species
(lifestages).

12. Use the SHArC to assess the “existing” (pre-project) and “with implementation” (post-project) habitat suitabil-
ity in terms of annually usable habitat area (SHArea).

CONTENTS 3

http://www.sciencedirect.com/science/article/pii/S1001627918300350
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HY.1943-7900.0001286
https://onlinelibrary.wiley.com/doi/full/10.1002/esp.3854
https://onlinelibrary.wiley.com/doi/full/10.1002/esp.3854
http://www.sciencedirect.com/science/article/pii/S0169555X14000099
LifespanDesign
ModifyTerrain
LifespanDesign
MaxLifespan
LifespanDesign
MaxLifespan
LifespanDesign
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

13. Use the ProjectMaker to calculate costs, the net gain in SHArea, and their ratio as a metric defining the project
trade-off.

The working principles of the LifespanDesign, MaxLifespan, ModifyTerrain, VolumeAssessment, SHArC, and Pro-
jectMaker modules are explained on their own Wiki pages. The differentiation between terraforming (framework),
vegetation plantings and other bioengineering, and connectivity features is described within the LifespanDesign Wiki.
The Installation Wiki pages describe the proper installation, file organization and environment of River Architect.

4 CONTENTS

LifespanDesign
MaxLifespan
ModifyTerrain
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/ProjectMaker
https://github.com/RiverArchitect/RA_wiki/ProjectMaker

CHAPTER

ONE

INSTALLATION

• Install River Architect

• Update River Architect

• Launch River Architect

• Prepare file structure

• Program environment setup and batchfile modification

• Requirements and dependencies

• Logfiles

River Architect applies on ArcGIS Pro’s arcpy package and needs to be executed with ArcGIS Pro’s conda environ-
ment (C:\Program Files\ArcGIS\Pro\bin\Python\scripts\propy.bat). The requirements section
provides more details and installation hints for external packages. River Architect is designed as an external applica-
tion rather than a python package, but its modules can be imported as packages for external use (see the Alternative
Run sections in the module Wikis).

1.1 Installation with Git Bash/GUI

We recommend downloading and updating River Architect using Git Bash (or Git GUI). Alternatively, River Architect
can be downloaded as zip file. However, updates are tricky when River Architect is downloaded as zip file.

Git Bash GitHub provides detailed descriptions and standard procedures to work with their repositories (read more).
The following “recipe” guides through the first time installation (cloning) of River Architect:

1. Open Git Bash

2. Type cd "D:/Target/Directory/" to change to the target installation directory (recommended: cd
"D:/Python/RiverArchitect/"). If the directory does not exist, it can be created in the system explorer
(right-click in empty space > New > > Folder).

3. Clone the repository: git clone https://github.com/RiverArchitect/program

5

https://git-scm.com/downloads
https://help.github.com/en/articles/cloning-a-repository

River Architect, Release latest

Done. Close Git Bash and start working with River Architect.

Git GUI For using Git GUI, open Git GUI and choose Clone Existing Repository. Enter the Source
Location: https://github.com/RiverArchitect/program, and the Target Directory: D:/Python/
RiverArchitect (or any other directory, but ensure that the directory does not exist). Click Clone. Done.

1.2 Update with Git Bash/GUI (re- pull)

Currently, Git Bash (or Git GUI) are the only options to update local copies of River Architect. Before updating
River Architect, we recommend to save any files and Conditions produced with River Architect externally (create
a save copy).

Git Bash Open Git Bash and do the following:

1. Go to the local River Architect installation directory: cd "D:/Python/RiverArchitect/program/"
(or wherever River Architect was cloned).

2. Check the current status: git status

3. Pull changes: git pull

Please note that merge errors may occur when changes were made in the local copy of River Architect. In this case,
Git Bash will guide through the manual merge process. If you modified template workbooks (Fish.xlsx or
threshold_values.xlsx): Create a .gitignore file in the /RiverArchitect/ directory. Open the
.gitignore file with a text editor and enter the following:

/LifespanDesign/.templates/threshold_values.xlsx
/.site_packages/templates/Fish.xlsx

Save the .gitignore file and close the text editor. Now git pull will no longer overwrite Fish.xlsx and
threshold_values.xlsx.

Git GUI Open Git Bash and open D:/Python/RiverArchitect from the Open Recent Repository list (or wher-
ever River Architect is installed). If not listed, click on Open Existing Repository and select the River Archi-
tect installation directory. Then:

1. Click on Rescan.

2. Click on the Remote drop-down menu > Fetch from > origin.

3. Click on the Merge drop-down menu > Local Merge.

1.3 Launch River Architect

To start using River Architect:

1. Right-click on DRIVE:\path\to\...\RiverArchitect\Start_River_Architect.bat and
click on Edit.

• In the Start_River_Architect.batchfile, ensure that the Python path is correctly defined ac-
cording to the installed version of ArcGIS: call EDIT>>"%PROGRAMFILES%\ArcGIS\Pro\bin\
Python\Scripts\propy"<<"%cd%\master_gui.py". For more information about running
standalone Python scripts in ArcGIS Pro’s conda environment, read their descriptions.

6 Chapter 1. Installation

https://git-scm.com/docs/gitignore
https://pro.arcgis.com/en/pro-app/arcpy/get-started/using-conda-with-arcgis-pro.htm

River Architect, Release latest

• Save and close Start_River_Architect.bat.

2. Double-click on DRIVE:\path\to\...\RiverArchitect\Start_River_Architect.bat to
start River Architect.

3. Create a Condition on the Welcome (Get Started) tab.

4. Analyze and create ecohydraulic paradises for Physical Habitats prefered by target (fish) species with sustainable
river design features using lifespan maps. Hint: The Quick GUIde sections in the module Wikis provide straight-
forward application guidance.

River Architect starts in a GUI that is stored in master_gui.py. Alternatively, the modules can be individually
launched by double-clicking on the LAUNCH_Windows_x64.bat in the module folders (not recommended and
may be abandoned in future versions).

1.3. Launch River Architect 7

https://www.sciencedirect.com/science/article/pii/S2215016119300913?via%3Dihub

River Architect, Release latest

8 Chapter 1. Installation

CHAPTER

TWO

PACKAGE STRUCTURE, REQUIREMENTS AND LOGFILES

2.1 File structure

The main directory (/RiverArchitect/) contains the program launcher named Start_River_Architect.
bat and the Python3 file master_gui.py. The River Architect modules are located in sub-folders. The master
folder (/RiverArchitect/) includes the following files and directories (the full list of all files for developers is
available here):

• .sitepackages Contains adapted third-party Python packages and own packages

– openpyxl Contains a modified version of the openpyxl package (version 2.5.2) adapted for River
Architect

– riverpy Particular python scripts with recurring routines and classes that are used in multiple modules.

* cDefinitions.py contains inter-module information of reach and feature keywords.

* cFeatures.py contains river design features classes with pointers to parameters and threshold
values.

* cFish.py contains the class that reads characteristic species and lifestage data from riverpy/
templates/Fish.xlsx.

* cFlows.py contains classes for creating flow duration curves and interpolating the annual/seasonal
flow durations of 2D-modeled discharges.

* cGravel.py contains subfeatures of the Gravel augmentation-feature in cFeatures.

* cInputOutput.py contains workbook (.xlsx) read and write routines.

* cInterpolator.py provides routines for interpolating data between exact data points (x and y).

* cLogger.py contains the Logger() class that specifies the appearance of logging messages.

* cMakeTables.py make habitat evaluation workbook tables (.xlsx format).

* cMapper.py contains mapping routines (see Mapping Wiki).

* cPlants.py contains subfeatures of the Plantings-feature in cFeatures and the
ModifyTerrain module.

* cReachManager.py processes reach information and reach-wise terrain change (volume differ-
ences).

* cThresholdDirector.py provides the ThresholdDirector() class for reading threshold
values from the “thresholds.xlsx” workbook.

* config.py contains global parameter definitions and pointers to workbooks.

9

River Architect, Release latest

* fGlobal.py provides functions that are required in this module and the other modules in several
classes.

*

– templates contains global template files (content will be enriched in future versions)

• 00_Flows contains templates for flow (discharge) analyses.

• 01_Conditions contains Condition folders with parameter Rasters. The condition name begins with a 4-
digit year number (e.g., 2018), optionally followed by a 3-characters reach ID (e.g., xyz) and a feature layer
indicator (e.g., lyr10 for terraforming features). The syllables are separated by an underscore. The process of
defining of reaches is explained in the Signposts and the ModifyTerrain Wiki.

• 02_Maps contains a map templates subfolder that is copied by River Architect’s modules for processed
conditions (e.g., 02_Maps/CONDITION/) for Mapping of Rasters and Shapefiles. The following templates
and folders may be modified:

– symbology\ contains a standard symbology layer file (.lyrx) for partially logarithmic lifespan classi-
fication

– river_template.aprx is the standard ArcGIS Pro project file, where developers recommend to adapt
background image (layer) connections.

• Module (folder): RiverArchitect/StrandingRisk for stranding risk analyses of restoration efforts.

– Output directory where Stranding Risk module outputs are saved.

– connect_gui.py is a standalone script that creates the graphical user interface (GUI) for running the
Stranding Risk module.

– cConnectivityAnalysis.py provides methods for calculating stranding risk metrics.

– cGraph.py contains graphic representation routines for habitat connectivity analyses.

• Module (folder): RiverArchitect/GetStarted prepare input Conditions from scratch or existing con-
ditions.

– .cache folder occurs temporarily when the module is executed.

– .templates folder should not be modified and contains the welcome screen imagery.

– cConditionCreator.py contains a managing class for creating and populating Conditions.

– cDetrendedDEM.py provides routines for generating detrended DEM Rasters.

– cMakeInp.py provides routines for creating input files (.inp) for lifespan mapping.

– cMorphUnit.py provides routines for calculating instream morphological units (Wyrick and Pasternack
2014).

– cWaterLevel.py provides routines for calculating depth to water table Rasters.

– fSubCondition.py contains routines for creating a spatial subset of an existing Condition.

– popup_py contain popup window classes guiding through the creation and population of Con-
ditions.

– welcome_gui.py contains the Get Started tab source code.

• Module (folder): RiverArchitect/LifespanDesign for Lifespan and Design analyses of restoration
features.

– Output folder with sub-folders for Rasters from individual module runs.

– .cache folder occurs temporarily when the module is executed.

10 Chapter 2. Package structure, requirements and logfiles

https://github.com/RiverArchitect/RA_wiki/Signposts
https://github.com/RiverArchitect/RA_wiki/Signposts
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain
https://www.sciencedirect.com/science/article/pii/S0169555X14000099
https://www.sciencedirect.com/science/article/pii/S0169555X14000099
https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/LifespanDesign

River Architect, Release latest

– .templates folder should not be modified and contains input (*.inp) files; if required, the module
includes routines for changing the input files.

– cLifespanDesignAnalysis.py contains a GIS-based functional core for processing Raster files.

– cParameters.py contains the parameter input core with pointers to Rasters and Raster names.

– cReadInpLifespan.py contains classes that read input data from *.inp files.

– feature_analysis.py coordinates class and function calls.

– lifespan_design_gui.py is a standalone script that creates the graphical user interface (GUI) for
running the LifespanDesign module.

• Module (folder): RiverArchitect/MaxLifespan for maximum lifespan assessment of feature groups
(concurring features)

– Output folder with sub-folders for Layouts, Maps and Rasters from individual module runs.

– .cache folder occurs temporarily when the module is executed.

– .templates folder contains additional Rasters, which are required by this module; other Rasters are
loaded from 01_Conditions.

– action_gui.py is a standalone script that creates the graphical user interface (GUI) for running the
MaxLifespan module.

– action_planner.py coordinates class instantiations and function calls.

– cActionAssessment.py contains the GIS-based functional core that identifies optimum lifespans
and associated features by processing lifespan/design Raster and shape files.

– cFeatureActions.py contains pointers to river restoration feature data in the LifespanDesign mod-
ule.

– cReadActionInput.py contains functions for reading *.inp files from the .templates folder.

• Module (folder): RiverArchitect/ModifyTerrain performs half-automated terrain modifications

– Input folder containing optional modified DEMs for volume difference assessment.

– Output folder with sub-folders Rasters from individual module runs.

– RiverBuilder folder contains original River Builder code (riverbuilder.r) and input files, as
well as help messages.

– .cache folder occurs when the module is executed.

– .templates folder contains the reach-defining workbook computation_extents.xlsx.

– cModifyTerrain.py contains GIS-based functional core for modifying DEM Rasters with thresh-
old values (grading and widening).

– cRiverBuilder.py contains routines for launching River Builder.

– cRiverBuilderConstruct.py contains routines for creating input files for River Builder.

– modify_terrain_gui.py is a standalone script that creates the graphical user interface (GUI) for
running the ModifyTerrain module.

– sub_gui_rb.py contains the GUI for creating River Builder input files.

• Module (folder): RiverArchitect/SHArC creates Habitat Suitability Index Rasters/maps and quantifies
annually usable habitat area for target fish species and user-defined ranges of discharges.

– CHSI contains subfolders with composite habitat suitability index Rasters for pre- and post-project
conditions.

2.1. File structure 11

https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

– HSI contains subfolders with habitat suitability index Rasters for pre- and post-project conditions.

– SHArea contains result workbooks with SHArea values for examined conditions. The Rasters
subfolder contains the associated composite habitat suitability Rasters.

– .cache folder occurs temporarily when the module is executed.

– .templates folder contains spreadsheet templates for the quantification of annually usable habitat area
and the definition of fish species, lifestages, and associated habitat suitability curves.

– cHSI.py contains classes to calculate composite habitat suitability Rasters, hydraulic habitat suitability
Rasters and interpolating the annual flow duration of considered discharges.

– sharc_gui.py contains the class of this module.

– sub_gui_covhhsi.py opens a new GUI window to create cover habitat suitability Rasters.

– sub_gui_hhsi.py opens a new GUI window to create hydraulic habitat suitability Rasters and deter-
mine associated annual flow duration.

• Module (folder): RiverArchitect/ProjectMaker applies on results from MaxLifespan and SHArC, as
well as manual inputs to calculate project cost-benefit metrics.

– .cache folder occurs temporarily when the module is executed.

– .templates folder contains a template folder tree and template workbooks with unit cost tables, as well
as sample application data that illustrate potential results of the module.

– cSHArC.py applies SHArC results, in particular cHSI Rasters for calculating SHArea in the project area.

– project_maker_gui.py contains the class of this module.

– s20_plantings_delineation.py applies LifespanDesign and MaxLifespan for assessing the most
suitable vegetation plantings within the project area.

– s21_plantings_stabilization.py applies LifespanDesign and MaxLifespan outputs as well as
user-defined input parameters for mapping nature-based engineering features required to stabilize vulner-
able vegetation plantings.

– s30_terrain_stabilization.py applies LifespanDesign and MaxLifespan outputs to stabilize
terraforming features.

– s40_compare_wua.py applies on SHArC cHSI Rasters used in cSHArC.py for assessing the annu-
ally usable habitat area for a target fish species and lifestage within the project area.

– LAUNCH_Windows_x64.bat is a batchfile that runs project_maker_gui.py on Windows x64.

• Module (folder): RiverArchitect/VolumeAssessment calculates excavation / fill volumes of ter-
raforming features.

– Output folder for calculation results.

– .cache folder occurs when the module is executed.

– .templates folder contains volume_template.xlsx.

– cVolumeAssessment.py contains GIS-based functional core for calculating volumes using an Ar-
cGIS “3D” extension.

– volume_gui.py is a standalone script that creates the graphical user interface (GUI) for running the
VolumeAssessment module

• Folder: Tools applies on results from MaxLifespan and SHArC, as well as manual inputs to calculate project
cost-benefit metrics.

– .cache folder occurs temporarily when the module is executed.

12 Chapter 2. Package structure, requirements and logfiles

https://github.com/RiverArchitect/RA_wiki/ProjectMaker
https://github.com/RiverArchitect/RA_wiki/ProjectMaker
https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/Tools
https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

– .templates folder contains a template workbooks for multiple purposes.

– Products folder contains results of any script in this folder.

– cHydraulic.py contains a class with routines for calculating cross-section-averaged flow characteris-
tics.

– cInputOutput.py contains classes required for reading and writing data, as well as calculation
progress logging.

– cPoolRiffle.py provides routines for designing self-sustaining pool-riffle channels.

– fTools.py is a set of functions used by other Python applications within this folder.

– make_annual_peak.py prepares required input data for statistic flow analyses and with the U.S. Army
Corps of Engineers’ HEC-SPP software.

– make_annual_flow_duration.py - deprecated (will be removed) creates flow duration curves (an-
nual averages) for the assessment of SHArea (deprecated). A more sophisticated version of this function is
integrated in the SHArC module with options to limit flow duration assessments to fish-lifestage seasons.

– morphology_designer.py creates design tables for self-sustaining pool-riffle channels (uses
cHydraulic.py and cPoolRiffle.py).

– run_make_....bat are a batchfiles that run make_....py on Windows.

– run_morphology_designer.bat is a batchfiles that runs morphology_designer.py.

2.2 Program environment setup and batchfile modification

The package is designed for an ArcGIS Pro’s Python3 conda environment. Before launching the River Architect
package for the first time, the batchfiles may require adaptions for the system environment. On Windows only (Linux
is not yet available because of arcpy issues - we are working on it), set the batch file environment as follows:

1. Right-click on Start_River_Architect.bat and choose Edit (with Texteditor) or Open with . . . and
choose a Texteditor software.

2. Check, and if necessary, replace the path to the good python interpreter: Default: "%PROGRAMFILES%\
ArcGIS\Pro\bin\Python\Scripts\propy" Note: Future versions of River Architect’s will require
gdal and rasterio. Therefore, developers recommend to create a new conda environment and to install
these packages to that new environment:

• Open “ArcGIS Pro” and click on the Project pane in the upper left corner

• Click on the Python tab

• Click on the Manage Environments button and on Clone default (or manually copy the default environ-
ment) to, for example, C:\Python\envs\arcgispro-py3-cust

• When cloning was successful, restart ArcGIS Pro and go back to the Project > Python tab and click on Add
Packages

• Search for, and install gdal (lib-gdal also works) and rasterio

• For starting River Architect from an IDE, set the new conda environment as interpreter (e.g., C:\Python\
envs\arcgispro-py3-cust\python.exe). The new environment may also be used in the batch-
files.

• The ArcGIS Pro website provides more information on how to install Python packages.

2.2. Program environment setup and batchfile modification 13

https://www.hec.usace.army.mil/software/hec-ssp/
https://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-conda.htm

River Architect, Release latest

3. Save LAUNCH_River_ArchitectWINx64.bat and close Texteditor.

4. Set default application to open input file type documents (*.inp files): Go to folder ...\River
Architect\LifespanDesign\.templates\ and right-click on mapping.inp to access the menu
Open with Choose any text editor, such as Notepad, Texteditor or Notepad++ and click OK.

There is no standard easy way to import ArcGIS’ arcpy package in Python running on UNIX platforms (Apple or
Linux). Future versions of River Architect aim at using other packages for geodata processing, which will also run on
UNIX platforms (we are currently experimenting with gdal and qgis.core).After editing the batch files, launch
River Architect by double-clicking on Start_River_Architect.bat.

2.3 Requirements and dependencies

2.3.1 Python packages

The execution of River Architect requires the following packages, which are part of the standard ArcGIS Pro - Python3
distribution:

• arcpy

• argparse

• glob

• logging

• openpyxl

• os

• shutil

• subprocess (not mandatory, also works without this package)

• tkinter

Additional packages:

• rpy2 and the R language: The Morphology\ModifyTerrain module requires an installation of the R language
to automate the production of river topographic data via the RiverBuilder R package. Note: environmental
variables %R_HOME% and %R_USER% must also be properly defined for Python to access the user installation
of R.

River Architect incorporates a modified version of openpyxl, but a more proper way is installing openpyxl with
ArcGIS Pro’s package manager. Future versions may additionally require the gdal and rasterio packages (see
above instructions).Furthermore, River Architect requires ArcGIS Pro’s “Spatial Analyst” and “3D” (Volume Assess-
ment only) extensions. Another version of River Architect based on open-source geodata processing packages is
planned for the future.

Any folder beginning with a “.” for example .cache or .idea must not be modified or assessed by any other
program, in particular during the execution of package methods. Files stored in .templates folders are directly
called by the GUIs if user definitions are admitted. At the end of execution, the applied modules have created their
output folders, which are indicated in the command prompt.

14 Chapter 2. Package structure, requirements and logfiles

https://github.com/RiverArchitect/RA_wiki/ModifyTerrain
https://www.r-project.org/
http://pasternack.ucdavis.edu/research/model-codes/river-builder/
https://openpyxl.readthedocs.io/en/stable/
https://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-conda.htm

River Architect, Release latest

2.3.2 Other software and dependencies

A workbook editing software such as Excel or LibreOffice is required for modifications of user-defined databases
(.xlsx files).

For the visualization of geodata (.shp and .tif files), and mapping with project files (.aprx), an installation of
ArcGIS Pro is required. Open-source alternatives are QGIS or SAGA (Please note: There are more GIS alternatives
out there.).

2.4 Logfiles

Logfiles logfile.log are created in the module directories during every run task. These files contain time-stamped
terminal messages of program activities, warnings and error messages. Thus, logfiles enable the user to review pro-
cess duration and to trace back problems. The handling of potential errors and warning messages are listed in the
Troubleshooting Wiki with descriptions of problem sources (cause) and solutions (remedy).

2.4. Logfiles 15

https://www.libreoffice.org/
https://www.qgis.org/en/site/forusers/download.html
http://www.saga-gis.org/en/index.html
https://github.com/RiverArchitect/RA_wiki/Troubleshooting

River Architect, Release latest

16 Chapter 2. Package structure, requirements and logfiles

CHAPTER

THREE

GET STARTED AND SIGNPOSTS

• Get Started and Create Conditions

– Create New Condition

– Populate New Condition

– Analyze Flow

– Make a Subset Condition

– Make Input Files (.inp)

– Align Input Rasters

• Geofile name conventions

• Input file preparation

17

River Architect, Release latest

18 Chapter 3. Get Started and Signposts

CHAPTER

FOUR

GET STARTED

River Architect’s first tab invites the user for the creation of Conditions.

A Condition is a folder filled with Rasters that represent a temporal snapshot (situation) of a river. Conditions are stored
in RiverArchitect/01_Conditions/. For example, if the goal is to assess feature lifespans based on the situ-
ation in the year 2008, the condition folder name may be 2008 and the corresponding folder is RiverArchitect/
01_Conditions/2008/. The Condition name may NOT include any SPACE character and good practice is that
the first 4 characters represent a 4-digit year. All other modules build on the data provided in RiverArchitect/
01_Conditions/ and the modules create output folders beginning with the defined Condition name and ending
with specifiers such as feature layer, reach, or fish (see bottom of HHSI output descriptions) information.

The Get Started-tab buttons invite the user to create conditions from scratch, populate (new) conditions, and make
spatial subsets. Every button opens up a new window with the following options:

19

River Architect, Release latest

• Create New Condition: Create a new Condition from scratch

• Populate Condition: Add Morphological Unit, Depth to water table, and Detrended DEM Rasters to an existing
(or newly created) Condition

• Create a spatial subset of a Condition: Define a boundary Raster that delineates a spatial frame for creating a
subset of an existing Condition (useful for comparing project alternatives at different sites).

4.1 Create New Condition

The creation of a new Condition requires that a 2D hydrodynamic model was previously run to obtain spatially explicit
flow depth and velocity data. Moreover, grain size data (spatially explicit)and a digital terrain elevation model need
to be available. A new popup window inquires following inputs for generating a new Condition from scratch:

• A name for the new Condition

• A folder containing flow velocity Rasters (preferably use GeoTFF .tif Rasters) corresponding to multiple
discharges (read more on discharge definitions). A Raster string may be defined to select only Rasters that
contain certain letters in their name from the defined folder (e.g., enter u).

• A folder containing flow depth Rasters (preferably use GeoTFF .tif Rasters) corresponding to multiple dis-
charges (read more on discharge definitions). A Raster string may be defined to select only Rasters that contain
certain letters in their name from the defined folder (e.g., enter h).

• A DEM (Digital Elevation Model) or DTM (Digital Terrain elevation Model) of the terrain covered by the flow
depth and velocity Rasters.

• A Grain Size Raster (U.S. customary: in feet or SI metric: in meters).

• An optional folder containing velocity angle Rasters (preferably use GeoTFF .tif Rasters) corresponding to
multiple discharges (read more on discharge definitions). Note that velocity angles are defined in degrees from
North, i.e. North=0, East=90, West=-90, South=180/-180. A Raster string may be defined to select only Rasters
that contain certain letters in their name from the defined folder (e.g., enter va).

• An optional Scour Raster (U.S. customary: in feet or SI metric: in meters) containing annual scour rates, which
may result from terrain change detection analyses (Pasternack and Wyrick 2017) or hydro-morphodynamic
modeling (tricky).

• An optional Fill Raster (U.S. customary: in feet or SI metric: in meters) containing annual fill rates, which may
result from terrain change detection analyses (Pasternack and Wyrick 2017) or hydro-morphodynamic modeling
(tricky).

• A background Raster, which can optionally be used to Align Input Rasters.

Note that the optional inputs are highly recommended to make the subsequent analyses robust.

Once the input is defined, clicking on the CREATE CONDITION button will create the new Condition as
RiverArchitect/01_Conditions/NEW_CONDITION with the following contents:

• back.tif is a background Raster that may be used for limiting lifespan analyses (LifespanDesign) extents
and all subsequent analyses. Moreover, the background Raster enables consistent mapping.

• dem.tif is a DEM Raster indirectly required by the LifespanDesign, Modify Terrain, Stranding Risk, Project-
Maker and Max Lifespan modules.

• dmean.tif is a grain size Raster indirectly required by the LifespanDesign, SHArC, Stranding Risk, Project-
Maker and Max Lifespan modules.

• fill.tif is topographic change Raster indicating annual sediment deposition rates, which are required by
the LifespanDesign, and indirectly, the Max Lifespan and ProjectMaker modules.

20 Chapter 4. Get Started

http://dx.doi.org/10.1002/esp.4064
http://dx.doi.org/10.1002/esp.4064

River Architect, Release latest

• hQQQQQQ.tif are flow depth rasters required by the LifespanDesign, SHArC, Stranding Risk, and (indirectly)
the ProjectMaker and Max Lifespan modules. Read more about file name conventions.

• uQQQQQQ.tif are flow velocity rasters required by the LifespanDesign, SHArC, Stranding Risk, and (indi-
rectly) the ProjectMaker and Max Lifespan modules. Read more about file name conventions.

• scour.tif is topographic change Raster indicating annual terrain erosion rates, which are required by the
LifespanDesign, and indirectly, the Max Lifespan and ProjectMaker modules.

• vaQQQQQQ.tif is flow velocity direction rasters required by the Stranding Risk module. Read more about file
name conventions.

The flow depth and velocity Rasters may require manual renaming to adapt to these Raster name conventions. A
River Architect Tools script facilitates renaming multiple file names. Subsequently, populating the created Condition
is strongly recommended

4.2 Populate Condition

Condition - wise Morphological Unit, Depth to water table, and Detrended DEM Rasters add consistency to the
analyses of all modules. The Populate Condition popup window invites the user to define a Condition to be
populated, and subsequently to create the following Rasters:

• Morphological Unit,

• Depth to water table, and

• Detrended DEM.

4.2.1 Make Morphological Unit Rasters

Instream morphological unit Rasters according to Wyrick and Pasternack (2014) enable the correct allocation of river
design features as defined in the thresholds workbook. For this purpose, the following inputs are needed:

• A flow velocity raster (use baseflow in line with scientific literature);

• A flow depth raster (use baseflow in line with scientific literature).

The delineation of morphological units as a function of flow depth and velocity can be modified in the
morphological_units.xlsx workbook (RiverArchitect/.site_packages/templates/ folder).
A click on the Populate Condition GUI’s View/change MU definitions opens this workbook.

4.2. Populate Condition 21

https://www.sciencedirect.com/science/article/pii/S0169555X14000099
https://en.wikipedia.org/wiki/Baseflow
https://www.sciencedirect.com/science/article/pii/S0169555X14000099
https://en.wikipedia.org/wiki/Baseflow
https://www.sciencedirect.com/science/article/pii/S0169555X14000099

River Architect, Release latest

For making changes in the workbook, choose either one of the pre-defined river classes (Mountain river with
large roughness elements, gravel-cobble bed, or cobble-boulder bed) or select User Defined from the
drop-down menu in cell E2. If User Defined is selected, morphological units can be defined as a function of upper
and lower limits of flow velocity and depth in cells N6:Q22 (instream) and/or N24:Q43 (floodplain). Morphological
unit names can be modified in cells M6:M22 (instream) and/or M24:M43 (floodplain). Please note:

• Do not modify anything outside the green frames, in particular, do not make changes within the red frame (cells
B3:J44 and the .templates sheet).

• Use metric units only; for the conversion of metric units for their application to Rasters in U.S. customary units,
select Units: U.S. customary (default) from the Populate Condition window. The currently
selected unit system is shown at the bottom of the Populate Condition window.

• Instream and floodplain units are currently equally applied (future versions of River Architect aim at a more
precise approach to delineate floodplain morphological units).

• The maximum length of morphological units names (M6:M22 and/or M24:M43) is 50 characters per cell.

• River Architect calculates a Raster for each morphological unit defined using the following arcpy.sa expres-
sion: Con(h > 0, Con(((u >= u_lower) & (u < u_upper) & (h >= h_lower) & (h <
h_upper)), mu_id)). The final Raster is created by the superimposition of all applicable morphologi-
cal raster and using the maximum mu_id value (pre-defined in column E). with arcpy.sa cell statistics:
CellStatistics(mu_id_raster_list, "MAXIMUM", "DATA").

• The results are

– the morphological unit’s ID Raster saved as RiverArchitect/01_Conditions/CONDITION/
mu.tif; and

22 Chapter 4. Get Started

River Architect, Release latest

– the morphological unit’s name Raster (uses an intermediated Raster to point conversion) saved as
RiverArchitect/01_Conditions/CONDITION/mu_str.tif.

4.2.2 Make Depth to Water Table Rasters

The depth to the water table is primarily required for identifying relevant regions for target indigenous plant species.
For this purpose, the following input Rasters are required.

• A terrain DEM (or DTM) is automatically assigned from the selected Condition folder.

• A low-level flow depth Raster (in arid regions) based on the assumption that the groundwater table in the vicinity
of the river corresponds to at least this water level, which marks the moment of highest water stress for plants.

RiverArchitect estimates the depth to water table by interpolating the given low flow water surface across the DEM
extent. There are three options for the interpolation method used to calculate this surface:

• IDW: Inverse distance weighted interpolation. Each null cell in the low flow depth raster is assigned a weighted
average of its 12 nearest neighbors. Each weight is inversely proportional to the second power of the distance
between the interpolated cell and its neighbor. Thus, the closest neighbors to an interpolated cell receive the
largest weights.

• Kriging: Ordinary Kriging interpolation. This method also uses a weighted average of the 12 nearest neigh-
bors, but weights are calculated using a semi-variogram, which describes the variance of the input data set
as a function of the distance between points. A spherical functional form is also assumed for the fitted semi-
variogram. Kriging is the most accurate interpolation method if certain assumptions are met regarding normality
and stationarity of error terms. However, it is also the most computationally expensive method.

• Nearest Neighbor: The simplest method, which sets the water surface elevation of each null cell to that of
the nearest neighboring cell.

All interpolated rasters are saved with a corresponding .info.txt file which records the interpolation method and
input rasters used in its creation.

4.2.3 Make Detrended DEM Rasters

Automation of grading or the relevance of widening and berm setbacks build on the relative elevation of the terrain
over the river water surface elevation. For this purpose, the following input Rasters are required.

• A terrain DEM (or DTM) is automatically assigned from the selected Condition folder.

• A flow depth Raster (in arid regions) marks the level for relative elevations. Designers may have different
reasons for choosing the relevant flow depth Raster (low flows for habitat enhancement or high flows for flood
protection), and therefore, no recommendation is made here.

Please note that step-like artifacts may occur in the detrended DEM. The steps result from variations in the Thalweg
elevation of the DEM that attenuate with the selection of flow depth Rasters of higher discharges. Users can decide to
select a low-flow depth Raster to be on the safe side for delineating vegetation plantings or a high-flow depth Raster
to reduce step-like artifacts in the detrended DEM.

4.2. Populate Condition 23

https://github.com/RiverArchitect/RA_wiki/River-design-features#plants

River Architect, Release latest

4.3 Create a spatial subset of a Condition

The creation of a spatial subset of a Condition requires a Boundary shapefile or Raster (if this is a GRID Raster, select
the corresponding .aux.xml file). The boundary file needs to contain On-values (Integer 1) and Off-values (Integer 0)
values only as specified in the Project Area Polygon preparation.

If a shapefile is selected:

• River Architect automatically uses the gridcode Field in the Shapefile’s Attribute Table.

• If the gridcode Field cannot be found, the third Field or the FID Field is used. (in that order). Note that the
enforced usage of the FID Field may cause errors later on.

• Ensure that the gridcode / third Field contains On-Off Integers only, where 0=Outside and 1=Inside boundary.

• Restart River Architect to create multiple subsets. This issue is related to arcpy, which will not release the
new datasets unless River Architect is closed (otherwise there will be an error message referring to registering
datasets) We are developing workarounds.

If a Raster is selected:

• Ensure that the Raster contains On-Off Integers only, where 0=Outside and 1=Inside boundary.

The boundary files are of particular interest within the ProjectMaker and SHArC modules.

4.4 Analyze Flows

The sustainability (lifespan) and ecohydraulic analyses require hydraulic data related to discharges (flows) and the
return period. The Analyze Discharge pop-up window guides through the creation of flow-metadata files that link
hydraulic Raster names with flows and return periods for a Condition. Analyze Discharge looks for flow depth and
velocity Rasters in a selected Condition, extracts the flow quantity, and creates a template workbook in the Condition
folder. For this purpose, hydraulic (flow depth and velocity) Rasters must be named according to the Geofile name
convetions (i.e., flow depth Rasters = “hQQQQQQ.tif” and flow velocity Rasters = “uQQQQQQ.tif”).

24 Chapter 4. Get Started

https://pro.arcgis.com/en/pro-app/help/data/geodatabases/overview/a-quick-tour-of-registering-and-unregistering-data-as-versioned.htm
https://pro.arcgis.com/en/pro-app/help/data/geodatabases/overview/a-quick-tour-of-registering-and-unregistering-data-as-versioned.htm

River Architect, Release latest

Start with selecting a Condition from the upper listbox and click the Analyze button. This creates a workbook
called RiverArchitect/01_Conditions/flow_definitions.xlsx, which automatically opens up and
asks for the definitions of flow return periods in years. Frequent flows with a return period of one year or less should
be assigned 1.0 (column C).

Flow duration curves are required for ecohydraulic analyses and can be generated for specific Physical Habitats pre-

4.4. Analyze Flows 25

River Architect, Release latest

ferred by target fish species-lifestages. Select at least one Fish Species - Lifestage from the lower listbox and use the
Add button (to add multiple Fish Species - Lifestages, select-add one-by-one). A click on the Modify Source
button opens the Fish.xlsx workbook that contains Fish Species - Lifestage definitions. At this point, on particular
fish names and seasons start/end dates may be modified. Modifications of Lifestages should be avoided. For more
details, refer to the SHArC Wiki pages. Before a Fish Species - Lifestage flow duration curve can be generated, ensure
to Select input Flow Series (workbook) with the following characteristics:

• The file ending must be .xlsx

• Column A must contain dates, where

– row 1 is the header (i.e., A1 = "Date"),

– row 2 indicates the date units (i.e., A2 = "(DD-MM-YY)"), and

– date series must be entered from row 3 onward (i.e., dates in the format A3 = 5-Sep-03 or A4 =
9/5/2003).

• Column B must contain mean daily flows, where

– row 1 is the header (i.e., B1 = "Mean daily"),

– row 2 indicates the date units (i.e., B2 = "(CFS)" or `B2 = “(CMS)”), and

– mean daily flows must be entered from row 3 onward (i.e., dates in the format B3 = 59.3 or B4 =
79).

• For later application, store the flow series workbook in RiverArchitect/00_Flows/
InputFlowSeries/ (default folder where River Architect looks for flow series).

An example workbook is provided with RiverArchitect/00_Flows/InputFlowSeries/
flow_series_example_data.xlsx.

Click on Make flow duration curve(s) (plural applies if multiple Fish Species - Lifestages are selected) to
generate an Physical Habitat workbook for target Fish Species - Lifestages. The workbook containing the last Fish
Species - Lifestage flow duration curve in the selected list will open up automatically when the flow duration curve gen-
eration finishes without error messages. All generated workbooks will be saved as RiverArchitect/00_Flows/
CONDITION/flow_duration_FILI.xlsx, where FILI denotes the first two letters of the selected fish species
and lifestage. The workbooks contain two tabs that link all observed mean daily flows from the target Fish Species -
Lifestage’s season (tab 1) with the available 2D model data (tab 2). The result is a flow duration curve that provides a
measure of how well the 2D model data may represent the relevant discharges for a Fish Species - Lifestage.

4.5 Generate Input File(s) (.inp)

Lifespan mapping uses input files (.inp) to identify relevant Rasters and (flood) return periods. Given that Analyze
Flow was previously executed for a Condition, an input file can be generated with the Make Input File tool.

The resulting input_definitions.inp is stored in the directory RiverArchitect/01_Conditions/
CONDITION/. input_definitions.inp contains information about lifespan duration and Raster names, which
link to Rasters containing spatial information as described in the Parameters Wiki page. The order of definitions and
lines must not be changed to ensure the proper functioning of the module. Enter or change the information in the
corresponding lines, only between the “=” and the “#” signs (the input routines uses these signs as start and end
identifiers for relevant information). Verify that every input_definitions.inp created contains the following
definitions (line by line):

26 Chapter 4. Get Started

River Architect, Release latest

The LifespanDesign module produces results based on the available information only, where any raster name can be
substituted with double quotation marks. However, this lack of information reduces the accuracy of final lifespan and
design maps. No results are produced for a feature where the information is insufficient for the analysis. The required
information for every feature corresponds to the definitions in the input file.

4.6 Map extent input definition files

The file RiverArchitect/LifespanDesign/.templates/mapping.inp defines map center points, ex-
tents (dx and dy in ft or m) and scales (scale has no effect currently). The extent of the map determines the map
scale, where the corresponding dx and dy values define the map width and height in ft or m, respectively. The layout
templates (in the project file RiverArchitect/02_Maps/templates/river_template.aprx) define the
paper size, which is by default “ANSI E landscape” (width = 44 inches, height = 34 inches). The map focus is defined
page-wise in mapping.inp from Line 8 onward. Existing pages can be removed by simply deleting the line. Addi-
tional pages can be added by inserting or appending a new line below Line 8, which needs to begin with the keyword
“Page” and x and y need to be stated in brackets, separated by a comma without any white space. Good practice for
changing the map layouts starts with importing the determine_extents.mxd layout from RiverArchitect/
ModifyTerrain/templates/ into a map project (.aprx). Zoom to new focus point using, for example, using
ArcGIS Pro’s Go To XY function or freehand to any convenient extent. Use ArcGIS Info cursor and click in the
center of the reticule to obtain the current center point. Write new center point coordinates for the desired page num-
ber in mapping.inp. For retrieving the extent, in ArcGIS Desktop, go to the View menu, click on Data Frame
Properties... and go to the Data Frame tab. In the Extent box, click on the scroll-down menu and choose
Fixed Extent. Subtracting the Right value from the Left value defines dx (Line 3 in mapping.inp) and
subtracting the Top value from the Bottom value defines dy (Line 4 in mapping.inp). The function uses these
definitions for zooming to each point defined below Line 8 in mapping.inp, cropping the map to the defined extents
and exporting each page to a pdf map bundle containing as many pages as there are defined in mapping.inp. The
program uses the reference coordinate system and projection defined in the .aprx file’s map layout templates or in
mapping.inp.

4.7 Align Input Rasters

In order to ensure robustness and accuracy of analyses, it is important that input rasters share a common alignment,
cell size, and coordinate system. Input rasters can be aligned in the following ways:

• During creation of a new Condition, align input rasters by using a background raster and selecting the “Use to
align input rasters” checkbox.

• For an existing condition, the tool from the GetStarted menu allows selection of an alignment raster.

The alignment routine reprojects and/or resamples the input raster data to match the following attributes from the input
alignment raster:

• ArcGIS SpatialRefernce (i.e. reference coordinate system)

• lower left corner of raster, modulo cell size

• cell size

Caution should be taken when using the built-in alignment routine, as input data may have already been resampled
(e.g. from a mesh, TIN, or point features) and repeated resampling of data may create artifacts in the resultant data.
Additionally, other routines in River Architect assume that water surface elevation can be calculated by summation of
the DEM and depth rasters, which may not hold true if these data have been subject to different resampling schemes.

4.6. Map extent input definition files 27

River Architect, Release latest

28 Chapter 4. Get Started

CHAPTER

FIVE

GEOFILE (RASTER) CONVENTIONS

The input Rasters need to be in GeoTIFF (.tif) format, notably, a raster_name.tif file. Note that River Architect
is designed to also handle Esri’s GRID format, but the primary raster file type should be GeoTIFF. Depth Raster
names must start with h and velocity Raster names must start with u, followed by a six-digit discharge QQQQQQ,
which is independent of the unit system. For example, a flow depth Raster associated with a discharge of 55 m3/s
needs to be called h000055.tif and a velocity Raster associated with a discharge of 11000 m3/s needs to be called
u011000.tif. Likewise, a flow depth Raster associated with a discharge of 55 cfs needs to be called h000055.
tif. The Raster names ignore discharge value digits after the decimal point. Moreover, every flow depth Raster
requires a matching velocity Raster and vice versa (e.g., h000055.tif requires a Raster called u000055.tif).
Note: back.tif may be used to limit calculation extents.

29

River Architect, Release latest

30 Chapter 5. Geofile (Raster) conventions

CHAPTER

SIX

MANUAL INPUT DATA PREPARATION

Relevant Raster names for calculation are defined in an input file (.inp) of the LifespanDesign module (input sec-
tion see for details and definitions). Please note that .inp files for lifespan mapping are different from the input
(.txt) files required for River Builder. Sample data representing a patch of a Californian gravel-cobble bed river in
2100 can be downloaded here. The input file of the sample case is located in 01_Conditions/2100_sample/
input_definitions.inp file. The sample case includes a set of Rasters for flow scenarios corresponding to
return periods of < 1.0 (ignored in the input file), 1.0, . . . , 2.0, 5.0, 10.0, 15.0, 20.0, 30.0, 40.0, and 50.0 years, as
well as a couple of annual discharges for habitat assessments. The according flows are defined in 01_Conditions/
2100_sample/flow_definitions.xlsx, with pre-compiled flow duration curves for whetted area (alhy),
Chinook salmon juveniles (chju), fry (chfr), and spawning (chju) lifestages that are stored in 00_Flows/
2100_sample/flow_duration_FILI.xlsx (see above flow definitions).

The below listed Rasters are available in GeoTIFF format in 01_Conditions/2100_sample/ for the sample
case condition = 2100_sample. Italic font indicates optional Rasters, which are, however, recommended to
use because they significantly increase the pertinence of lifespan maps; Rasters written in CAPITALIZED ROUGE
FONT font are required for River Architect to work. The Raster names correspond to the above-described naming
conventions.

More Rasters indicating morphological units (e.g., Wyrick and Pasternack 2014) or topographic change (e.g., Carley
et al. 2012) as well as a detrended digital elevation model (DEM), surface grain size estimate and a depth to water
table Raster are (optionally) required.

Some parameters, such as the dimensionless bed shear stress or the mobile grain size, can be directly computed from
the flow velocity, depth, and present grain size. Additional input Rasters could be used for every parameter to shorten
calculation duration, but this approach required large storage capacity on the hard disk and it is less flexible regarding
computation methods. Therefore, the River Architect uses its own routines for calculating parameters such as the
dimensionless bed shear stress or mobile grain sizes.

NoData handling: River Architect does not consider pixels with NoData values and has routines to handle NoData
during the calculation.

31

https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/SampleData/archive/master.zip
https://www.sciencedirect.com/science/article/pii/S0169555X14000099
https://www.sciencedirect.com/science/article/pii/S0169555X12003819
https://www.sciencedirect.com/science/article/pii/S0169555X12003819

River Architect, Release latest

32 Chapter 6. Manual input data preparation

CHAPTER

SEVEN

FEATURE LIFESPAN AND DESIGN ASSESSMENT

• Introduction to lifespan and design mapping

• Quick GUIde to lifespan and design maps

– Interface and choice of features

– Input: Condition and preparation of Rasters

– Input: Modify threshold values

– Input: Optional arguments

– Run

– Alternative run options

– Output

• Parameter hypotheses

• River design and restoration features

• Code extension and modification

33

River Architect, Release latest

34 Chapter 7. Feature lifespan and design assessment

CHAPTER

EIGHT

INTRODUCTION TO LIFESPAN AND DESIGN MAPPING

Survival thresholds applied to a sequence of habitat enhancement features can be spatially compared with hydraulic
and sediment data as a result of 2D numerical modeling. Modeled discharges (flows) can be associated with flood
return periods that determine feature lifespans. The resulting lifespan maps indicate the temporal stability of particular
river design features and techniques. Areas with particularly low or high lifespans help planners optimize the design
and positioning of features. Moreover, discharges related to specific flood return periods enable probabilistic estimates
of the longevity of particular features. Following these procedures described by Schwindt et al. (2019) (open access
factsheet-version), the LifespanDesign module creates Rasters, projects (aprx), and maps (pdf) of the following
types:

• Lifespan maps qualitatively indicate areas where features make sense and the associated feature lifetime esti-
mate in years.

• Design maps indicate dimensional requirements for achieving the success of a feature (e.g., the minimum
required log diameter for the stability of wood / LWM).

This Wiki page explains the usage of the LifespanDesign module and it is structured as follows:

• A Quick Guide to the application of the code using GUI with descriptions of required input Rasters and alterna-
tive launch options.

• Physical explanations of relevant parameters.

• Explanations of hypotheses in the design of river modification and restoration features.

• Coding conventions with descriptions of extension possibilities.

35

https://www.sciencedirect.com/science/article/pii/S0301479718312751
https://www.sciencedirect.com/science/article/pii/S2215016119300913/pdfft?md5=0609592e5beae22d0fc68adb409129f8&pid=1-s2.0-S2215016119300913-main.pdf
https://www.sciencedirect.com/science/article/pii/S2215016119300913/pdfft?md5=0609592e5beae22d0fc68adb409129f8&pid=1-s2.0-S2215016119300913-main.pdf
https://github.com/RiverArchitect/RA_wiki/wiki/River-design-features#elj

River Architect, Release latest

36 Chapter 8. Introduction to lifespan and design mapping

CHAPTER

NINE

QUICK GUIDE TO LIFESPAN AND DESIGN MAPS

9.1 Interface and choice of features

After successful Installation and the creation of at least one Condition, lifespan and design maps can be created from
the Lifespan -> LifespanDesign tab.

To begin with lifespan/design mapping, click on the drop-down menu “Add Features” and select relevant features.
Multiple selection is possible and will extend the “Selected features” list. The LifespanDesign module enables the se-
lection of the feature groups of “terraforming” (framework), “vegetation plantings”, “other nature-based engineering”
and “connectivity / maintenance”.

37

https://github.com/RiverArchitect/RA_wiki/wiki/Installation

River Architect, Release latest

9.2 Input: Condition and preparation of Rasters

The names of input Raster files are defined in a proper file format (.inp), which can be changed directly from the GUI
button “Modify Raster input”. The .inp files indicate after the # if it requires a single Raster name only (STRING)
or a list of Rasters (min. two Rasters, LIST). The extension .tif is not required for in the Raster names. The max-
imum number of hydraulic Rasters is unlimited. The lifespans related to the hydraulic Rasters are also defined in
the separate .inp file. The Get Started module provides routines for setting up input files that must be stored as
RiverArchitect/01_Conditions/CONDITION/input_definitions.inp for every Condition. Mod-
ifications of map extents can be made by clicking on the “Modify map extent” button or (un-)check the Limit
computation extent to background (back.tif) Raster box.

9.3 Input: The threshold values workbook threshold_values.xlsx
and calculation hierarchy

The “Modify survival threshold values” button opens the master workbook containing threshold val-
ues and survival identifiers (location: LifespanDesign/.templates/threshold_values.xlsx).

Any threshold value can be changed or defined for any feature, but the workbook structure may not be modified (i.e.,
cells, columns or rows may not be shifted, moved or deleted). The unit system (U.S. customary or SI metric) in the
threshold values spreadsheet are independent of the GUI settings but they need to be coherent with the input Rasters
of the Condition.

River Architect automatically identifies defined threshold values for selected features. Moreover, River Architect auto-
matically applies all defined threshold values to the extent of Rasters available within a Condition. The identification
and execution of possible analyses follow a strictly hierarchical order. If an analysis cannot be executed because of
missing threshold value definitions or Rasters, River Architect automatically proceeds to the hierarchically next lower
analysis. The analysis hierarchy is defined in order to first created lifespan maps (if row 24 in threshold_values.
xlsx is set to TRUE for a feature), and second to save design maps (if row 25 in threshold_values.xlsx is
set to TRUE for a feature). When defining threshold values in threshold_values.xlsx carefully study the fol-
lowing hierarchy and parameter application of River Architect (read more about threshold application to features):

1. Dimensional hydraulic parameter analysis:

• Flow depth starting with the lowest discharge to the highest discharge Raster (hQQQQQQ_QQQ.tif).
A threshold value for the flow depth above which a feature will fail can be defined in row 12 in
threshold_values.xlsx.

38 Chapter 9. Quick GUIde to lifespan and design maps

River Architect, Release latest

• Bed shear stress b calculated as ras_tb = {[uQQQQQQ_QQQ / (5.75 * Log10(12.2 · hQQQQQQ_QQQ /
(2 · 2.2 · dmean)))]2} where

• A threshold value for mobility according to the bed shear stress \b, cr can be defined in row 6 of
threshold_values.xlsx (read more for example in Lamb et al. 2008)

• w = water density (1000 kg / m3)

• uQQQQQQ_QQQ (m/s or fps), hQQQQQQ_QQQ (m or ft), and d84 = 2.2 · dmean (m or ft) are arcpy.
Raster()s considering that the grain diameter D84 can be approximated by D84 = 2.2 · D50 (Ricken-
mann and Recking 2011)

• g = gravitational acceleration (9.81 m/s2)

• s = ratio of sediment grain and water density (2.68)

• Note that the b analysis is omitted if SF is defined, which enables to run either a b analysis OR a mobile
grain analysis.

• Flow velocity starting with the lowest discharge to the highest discharge Raster (uQQQQQQ_QQQ.
tif). A threshold value for the velocity above which a feature will fail can be defined in row 13 in
threshold_values.xlsx.

2. Dimensionless hydraulic parameter analysis:

• Dimensionless bed shear stress * calculated as ras_taux = {w · [uQQQQQQ_QQQ / (5.75 * Log10(12.2
· hQQQQQQ_QQQ / (2 · 2.2 · dmean)))]2} / [w · g (s - 1) · dmean] where

• A threshold value for mobility according to the critical dimensionless bed shear stress *, cr can be defined
in row 7 of threshold_values.xlsx (read more for example in Lamb et al. 2008)

• w = water density (1000 kg / m3)

• uQQQQQQ_QQQ (m/s or fps), hQQQQQQ_QQQ (m or ft), and d84 = 2.2 · dmean (m or ft) are arcpy.
Raster()s considering that the grain diameter D84 can be approximated by D84 = 2.2 · D50 (Ricken-
mann and Recking 2011)

• g = gravitational acceleration (9.81 m/s2)

• s = ratio of sediment grain and water density (2.68)

• Note that the * analysis is omitted if SF is defined, which enables to run either a * analysis OR a mobile
grain analysis.

• Froude number Fr as ras_Fr = uQQQQQQ_QQQ / (g · hQQQQQQ_QQQ)1/2

• A threshold value for mobility according to the Froude number can be defined in row 13 of
threshold_values.xlsx

• Mobile grains (bed mobility) ras_Dcr, fine sediment ras_Dcf size Rasters as: ras_Dcx = = SF ·
uQQQQQQ_QQQ2 · n2 / [(s - 1) · hQQQQQQ_QQQ1/3 · *, cr] where

• *, cr is the critical dimensionless bed shear stress (i.e., threshold value) above which sediment is mobile
(read more for example in Lamb et al. 2008). *, cr can be defined in row 6 of threshold_values.
xlsx.

• n is Manning’s n in s/m1/3 (or s/ft1/3 - an internal conversion factor of k = 1.49 applies), which can be
changed in the LifespanDesign GUI

• SF is a dimensionless safety factor that can be defined within threshold_values.xlsx; the angular boulders
/ grains threshold definitions indicate the application of a safety factor of 1.3. The Mobile Grain analysis
is omitted if SF is not defined, which enables to run either a * analysis OR a mobile grain analysis.

• Note that a Mobile Grain analysis will only work if a safety factor is defined in row 19 of thresh-
old_values.xlsx.

9.3. Input: The threshold values workbook threshold_values.xlsx and calculation hierarchy 39

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JF000831
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010WR009793
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010WR009793
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JF000831
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010WR009793
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2010WR009793
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JF000831
https://en.wikipedia.org/wiki/Manning_formula#Manning_coefficient_of_roughness

River Architect, Release latest

3. Topographic change Rasters tcd are applied to limit lifespan Rasters to regions where the fill and scour
threshold values defined in rows 22 and 23 of threshold_values.xlsx, respectively, are exceeded. The
“Topographic change: inverse relevance” threshold applies when the feature relevance refers to regions where
the scour and fill rates below the specific threshold values are relevant. By default, features such as angular
boulders (rocks or riprap) are relevant where the topographic change rate (scour) exceeds the angular boulder’s
threshold value for scour. However, features such as grading or side cavities, are relevant where the scour or fill
rates do not exceed the threshold rates because these areas are presumably disconnected from the river. Thus,
“Topographic change: inverse relevance” is TRUE for the grading, side cavity, and side channel features.

4. A Morphological Unit Raster as produced with the GetStarted module according to Wyrick and Pasternack
2014 can be used to limit lifespan mapping to morphologically reasonable regions. For example, grading of
bedrock units is not reasonable and the default threshold_values.xlsx excludes bedrock in row 16.
River Architect enables the application of limit morphological units with an exclusive and an inclusive method:

• If the exclusive method is chosen (set row 18 in threshold_values.xlsx to 0), River Architect
will look for morphological units listed in row 16 and it will set pixels with these morphological units to
NoData in lifespan maps.

• If the inclusive method is chosen (set row 18 in threshold_values.xlsx to 1), River Architect will
look for morphological units listed in row 17 and it will set pixels that are not within these morphological
units to NoData in lifespan maps.

• Morphological units can be entered as a comma-separated list in row 16 and 17 of
threshold_values.xlsx corresponding to the settings made during the morphological unit
Raster creation (morphological units are defined in RiverArchitect/.site_packages/
templates/morphological_units.xlsx.

5. Side channel delineation work similar to morphological unit delineation and will only be executed if the Con-
dition folder contains a Raster called sidech (or otherwise named according to the input file in line17). The
side channel delineation Raster should only contain Integer values of 1 indicating pixels where a side channel
may be drawn. There is no side channel threshold value.

6. The Depth to the water table table (see d2w.tif Raster creation with the GetStarted module) is particu-
larly important for vegetation plantings or grading (to make terrain suitable for vegetation plantings) features.
Threshold values for a lower and an upper limit of the depth to the water table value are defined in row 7 and row
8 of threshold_values.xlsx, respectively. River Architect will set all areas (pixels) that are not within
the value range defined in row 7 and row 8 to NoData in lifespan (and design) maps. Leave both rows empty
to avoid depth to water table-limited lifespan analyses.

7. The Detrended DEM threshold values (see dem_detrend.tif Raster creation with the GetStarted module)
may be important to limit terraforming features, such as widening/berm setbacks to economically reasonable
ranges. Threshold values for a lower and an upper limit of the detrended DEM are defined in row 9 and row 10
of threshold_values.xlsx, respectively. River Architect will set all areas (pixels) that are not within the
value range defined in row 9 and row 10 to NoData in lifespan (and design) maps. Leave both rows empty to
avoid detrended DEM-limited lifespan analyses.

8. Nature-based engineering in terms of angular boulders or streamwood are applied to areas (pixels) where
a Frequency threshold (row 15 in threshold_values.xlsx) is defined.

9. Other nature-based engineering than angular boulders or streamwood is applied where the terrain is steep
and as a function of depth-to-groundwater (baseflow level). River Architect uses the Terrain Slope threshold
values defined in row 20 of threshold_values.xlsx to identify areas (pixels) where other nature-based
engineering is required. The Depth to water table thresholds are used to differentiate between vegetative
and mineral nature-based engineering. River Architect applies nature-based engineering such as fascines or
geotextile between the (min) value in row 7 and the (max) value in row 8. Regions with at terrain slope above
the threshold defined in row 20 and above the maximum Depth to the water table defined in row 8 get mineral
nature-based engineering (such as rock paving or riprap) assigned. The differentiation is made because nature-
based engineering features may dry out when the water table is too far away (vertically).

40 Chapter 9. Quick GUIde to lifespan and design maps

https://www.sciencedirect.com/science/article/pii/S0169555X14000099
https://www.sciencedirect.com/science/article/pii/S0169555X14000099

River Architect, Release latest

10. Design maps indicating the stability of grains (sediment) or wood (logs) extracted after the generation of all
above-listed lifespan maps (i.e., design mapping is at the bottom of the hierarchy). Thus, design mapping
makes sense for features where grain stability is relevant (including angular boulders, backwater zones, grading,
gravel/sediment augmentation, and side channel creation) and for the streamwood feature.

• Set row 25 to TRUE

• For stable grain size design maps, make the following definitions for a feature in
threshold_values.xlsx:

• critical dimensionless bed shear stress *, cr in row 6

• frequency threshold in years in row 15 to define the minimum expected lifespan that is required; River
Architect uses hydraulic parameter rasters (hQQQQQQ_QQQ and uQQQQQQ_QQQ) corresponding to the
return period defined within the GetStarted module (read more on the calculation of stable grain sizes).

• optional: set a required maximum grain size (e.g., to ensure the filter stability of sand for increasing the
soil capilarity for vegetation plantings, the default value for the Incorporation of fine sediment feature in
column S is set to 2.6 cm corresponding to 0.00667 in)

• For stable wood log design maps, make the following definitions for a feature in threshold_values.
xlsx:

• flow depth in row 11 (in m or ft)

• Froude number in row 13 (dimensionless)

• frequency threshold in years in row 15 to define the minimum expected lifespan that is required; River
Architect uses hydraulic parameter rasters (hQQQQQQ_QQQ and uQQQQQQ_QQQ for the flow depth and
Froude number calculation) corresponding to the return period defined within the GetStarted module (read
more on the calculation of stable wood log sizes).

More information on threshold values is provided in the Feature descriptions with detailed discussions of the identifiers
and threshold values.

9.4 Input: Optional arguments

The checkbox “Include mapping after Raster preparation” provides the optional automated mapping of results. The
checkbox “Apply wildcard Raster to spatially confine analysis” can be checked to use a Condition’s wild.tif Raster
for spatial limitation of the results. This application makes sense for example if the wildcard Raster contains particular
land parcels, where the owner wants to foster habitat enhancement. The checkbox “Apply habitat matching” provides
the option of habitat matching to regions where the habitat suitability index is low (<0.5, see explanations in the SHArC
module. Switching between unit systems (U.S. customary or SI - metric) is possible via the drop-down menu “Units”;
please note that the unit system needs to be consistent with all input Raster files. Manning’s n (in s/m1/3) is used in
the grain mobility analysis (Angular boulder feature descriptions) to determine shear velocity that acts on grains. The
default value is 0.0473934 s/m1/3 (the GUI only shows the first three decimal places), which corresponds to a global
optimum in the sample case (gravel-cobble bed river). Even if the unit system is set to U.S. customary, Manning’s n is
defined in the GUI in SI-metric units (an internal conversion factor of k = 1.49 (i.e., n / k is automatically applied for
U.S. customary unit settings). The logfiles (produced during the program execution) will state the applied Manning’s
n value if used.

9.4. Input: Optional arguments 41

https://github.com/RiverArchitect/RA_wiki/wiki/SHArC
https://en.wikipedia.org/wiki/Manning_formula#Manning_coefficient_of_roughness

River Architect, Release latest

9.5 Run

Once all inputs are defined, click on “Run” (drop-down menu) and “Verify settings” to ensure the consistency of the
settings (the window will freeze for some seconds). After successful verification, the selected options change to green
font. The “Run” drop-down menu provides the following functions:

• Raster Maker prepares lifespan and design Rasters in the directory RiverArchitect/
LifespanDesign/Output/Rasters/CONDITION/

• Map Maker prepares project maps and PDF assemblies in the directory RiverArchitect/02_Maps/
CONDITION/; Before running Map Maker, ensure that the correct background image (01_Conditions/
CONDITION/back.tif) is linked in the project template file RiverArchitect/02_Maps/
templates/river_template.aprx. The mapping extents can be modified using the mapping.inp
input file and the Mapping Wiki explains how the symbology, layouts, and other extent settings may be modified.

Either “Run” option causes a run confirmation window popping up and clicking “OK” calls the analysis, which will
run in the background Python window and it freezes the GUI windows. Running the Raster Maker may take 0.1
to 10 hours, depending on the input Raster size, feature set and habitat matching options. After the analysis, the GUI
unfreezes and a new button invites to read the logfiles with run information, as well as error and warning messages
that may have occurred during the analysis. Alternatively, the lifespan mapping functions can be imported in other
Python applications (without the GUI) as described in the following Alternative Run options.

9.6 Alternative run options

The three run options of the GUI call the following methods:

1. Raster Maker calls feature_analysis.raster_maker for the preparation of Rasters in the direc-
tory Output/Rasters/CONDITION/

2. Map maker calls feature_analysis.map_maker for the preparation of an ArcGIS Pro project (aprx)
file and maps assembled in pdfs in the directory RiverArchitect/02_Maps/CONDITION/; by default
the layouts stored in RiverArchitect/02_Maps/CONDITION/ underlie the pdf creation but the method
also accepts other input directories as an optional argument. Please note that directories always need to be
absolute; relative paths will result in errors.

The alternative run options are relevant for example to batch process several Conditions. The first alternative run
option is to import the LifespanDesign module in the ArcGIS Pros Python environment as follows:

1. Prepare input data in .../01_Conditions/CONDITION/ and adapt the background layer image datasets
in RiverArchitect/02_Maps/templates/river_template.aprx

2. Go to ArcGIS Pros Python folder and double-click one of the following: C:\Program Files\ArcGIS\
Pro\bin\Python\scripts\propy.bat or C:\Program Files\ArcGIS\Pro\bin\Python\
envs\arcgispro-py3\python.exe

3. Enter import os

4. Navigate to the script direction using the command os.chdir("ScriptDirectory") Example: os.
chdir("D:/Python/RiverArchitect/LifespanDesign/")

5. Import the module: import feature_analysis as fa

Once the module is imported three methods are available and their use is intended in the following order:

1. fa.raster_maker("condition", args) for Raster (GeoTIFF) creation

2. fa.map_maker("condition", args) for map (pdf) creation

42 Chapter 9. Quick GUIde to lifespan and design maps

River Architect, Release latest

The following steps illustrate the application for creating Rasters.

• Basic execution: fa.raster_maker("condition"), for example: fa.
Raster_maker("2008_rrr")

• The code is now running (this takes two to four hours) and it will prompt its activities.

• Alternatively, the analysis can be limited to some features only (count 2 to 60 minutes per feature for input
Raster sizes of 5MB and 1GB, respectively). fa.raster_maker("condition", args) accepts op-
tional arguments that are feature_list, which enables the analysis of any feature listed in the Features
section. Some examples for particular applications: -> Example 1: fa.raster_maker("condition",
["Plantings"]) analyzes plantings only. -> Example 2: fa.raster_maker("condition",
["Plantings", "Boulders/rocks"], True)analyses plantings and angular boulders (rocks /
riprap) only with an optional argument that activates the creation of layouts for plantings and angular boul-
ders (rocks). -> Example 3: fa.raster_maker("2008_rrr")analyses all available features.

• The complete list of optional arguments of is as follows: Hint: Respecting the order of optional arguments is
crucial to ensure proper application of the desired analysis options.

– args[0] = feature_list as above described.

– args[1] = mapping, which can be True or False (default).

– args[2] = habitat_analysis, which can be True or False (default) for activating or deac-
tivating habitat delineation (limitation) of restoration features to zones with low habitat suitability (e.g.,
cHSI = 0.0 to 0.5).

– args[3] = habitat_radius is a float number determining in what distance to low habitat suit-
ability zones restoration features should be applied (default = 400.0 m or ft).

– args[4] = feature_list is either us (default) or si.

– args[5] = feature_listis either True or False (default).

The code creates a temp folder called .cache where it stores temp variables, databases, and Rasters. Avoid accessing
.cache while the code is running and ensure its (manual) deletion in the case that the code crashed.

fa.map_maker(args, **kwargs) creates pdf map assemblies based on the layout files stored in
RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx and Rasters prepared
with fa.Raster_maker("condition", ["Featurename"], True). fa.map_maker(args,

**kwargs) accepts an optional argument defining a CONDITION and a keyworded argument defining map-able
reach IDs:

• Option 1: fa.map_maker("2018_mod") uses the map folder RiverArchitect/02_Maps/
2018_mod/ and Rasters stored in RiverArchitect/Output/Rasters/2018_mod/

• Option 2: fa.map_maker("2018_mod", "rrr") uses the map folder RiverArchitect/02_Maps/
2018_mod/, Rasters stored in RiverArchitect/Output/Rasters/2018_mod/, and limits mapping
to the extents related to a reach "rrr" with its extents defined in RiverArchitect/ModifyTerrain/.
templates/computation_extents.xlsx

The second alternative run option for the LifespanDesign module is to run it as a standalone script
(feature_analysis.py) from the system command line:

1. Launch terminal (Start -> type cmd)

2. Navigate to the place where ArcGIS python.exe is stored: For example: C:\Program Files\ArcGIS\
Pro\bin\Python\envs\arcgispro-py3\

3. Run as script: python.exe DriveLetter:\...\LifespanDesign\
feature_analysis("condition", ["Featurename"])

9.6. Alternative run options 43

River Architect, Release latest

4. The code asks for a condition, which needs to be typed case-sensitive and without any apostrophes: For example:
Enter the condition (shape: >> XXXX (e.g., >> 2008))>> 2008

5. Next, the code asks for a feature_list, which is and optional argument (simply hitting enter works
though); the feature list must be typed as list (in brackets): Enter the condition (no mandatory;
do not forget brackets example: >> ["Featurename1", "Featurename2"] >>
["Sidecavity", "Bermsetback"]

6. The program is now running (this takes time) and it will prompt when it finished.

Calling the module as .py script may cause errors because of differences between path interpretation methods
and it is limited to the creation of Rasters only. Therefore, the fastest and most consistent way for using the
feature_analysis script is to import it as above described.

9.7 Output

9.7.1 Rasters

The output Rasters are either of the types lifespan (lf_shortname) or design (ds_shortname) and they are
created in .../Output/Rasters/CONDITION/. The usage of shortnames (see the list on the Features page)
is necessary because arcpy cannot handle Rasters with names longer than 13 characters when the GRID format is
used (even though the standard Raster type is GeoTIFF). The analysis automatically shortens too long Raster names
based on shortnames and it creates the condition-output directory if it does not yet exist. Existing files in the Output/
Rasters/CONDITION/ folder are overwritten (the code enforces overwriting and tries to delete any existing content
(i.e., ensure that the output folder does not contain any important files).

9.7.2 Mapping

The module produces an ArcGIS Pro project file (.aprx) and .pdfs in RiverArchitect/02_Maps/
CONDITION/map_CONDITION_design.aprx. The map extents can be modified in the mapping.inp input
file. For map modifications, read the above descriptions or the Mapping Wiki.

9.7.3 Interpretation

The success of features corresponds to their ecological sustainability and physical stability, which may positively
correlate (i.e., high stability corresponds to high ecological sustainability). However, features such as gravel augmen-
tation or grading have an inverse relationship between ecological sustainability and physical stability. For example,
frequently mobile gravel injections create valuable habitat but are, by definition, unstable. In such cases, the lifespan
maps need to be considered oppositely: Optimum areas for application correspond to regions with low lifespans (see
more in Schwindt et al. 2019).

44 Chapter 9. Quick GUIde to lifespan and design maps

https://www.sciencedirect.com/science/article/pii/S0301479718312751

River Architect, Release latest

9.7.4 Quit module and logfiles

The GUI can be closed via the Close dropdown menu if no background processes are going on (see terminal mes-
sages). The GUI flashes and rings a system bell when it completed a run task. If layout creation and/or mapping were
successfully applied, the target folder automatically opens. After execution of either run task, the GUI disables func-
tionalities, which would overwrite the results and it changes button functionality to open logfiles and quit the program.
Logfiles are stored in the RiverArchitect/ folder with the name logfile.log. Logfiles from previous runs
are overwritten.

9.7. Output 45

River Architect, Release latest

46 Chapter 9. Quick GUIde to lifespan and design maps

CHAPTER

TEN

MAXIMUM LIFESPAN ASSESSMENT (MAXLIFESPAN)

• Introduction to maxium (best) lifespan mapping

• Quick GUIde to maximum lifespan maps

– Main window set-up and run

– Alternative run options

– Output

* Geofiles

* Mapping

– Quit module and logfiles

• Working principle

• Code modification: Add feature sets for maximum lifespan maps

47

River Architect, Release latest

48 Chapter 10. Maximum Lifespan Assessment (MaxLifespan)

CHAPTER

ELEVEN

INTRODUCTION TO MAXIUM (BEST) LIFESPAN MAPPING

The MaxLifespan module serves for the GIS-based prioritization of river restoration features based on lifespan and
design maps and it creates rasters, shapefiles, and pdf-maps. This Wiki page is structured as follows:

• Quick Guide to the application of the GUI with a description of required input (Rasters), alternative run options
and output descriptions.

• Output and procedures for pdf-map generation.

• Code conventions and extension possibilities.

Maximum lifespan mapping uses lifespan maps produced with the LifespanDesign to identify the feature(s) with the
highest lifespan for every pixel within the predefined feature groups. If the maximum pixel lifespan can be obtained
by several features, the MaxLifespan module overlays polygons indicating the best feature types. For terrain modifi-
cations, all relevant features (grading, widening/berm setback, backwater enhancement as well as side channel or side
cavity creation) are equally considered. Thus, the planner has to decide and manually manipulate feature polygons
which are relevant for the particular project. Regarding toolbox features, the MaxLifespan module evaluates plantings
against wood (engineered log jams) and angular boulders (rocks) placement to increase habitat suitability and stabilize
terrain modifications. The user has to decide, which plantings, wood or angular boulders (rocks) polygons are relevant
to keep for the final version. Finally, the MaxLifespan module uses complementary feature lifespan and design maps
as well as terrain slope analysis to highlight areas where gravel augmentation, the incorporation of fine sediment in the
soil and bioengineering features for terrain/slope stabilization are relevant. Also in this last step, the planner needs to
decide, which feature polygons to keep. However, if the analysis of complementary features identifies unstable slopes,
it is strongly recommended to take action in the concerned areas.

49

https://github.com/RiverArchitect/RA_wiki/LifespanDesign

River Architect, Release latest

50 Chapter 11. Introduction to maxium (best) lifespan mapping

CHAPTER

TWELVE

QUICK GUIDE TO MAXIMUM LIFESPAN MAPS

12.1 Main window set-up and run

The MaxLifespan module requires lifespan and design maps (i.e., the prior run of the LifespanDesign module is
required). Then, the MaxLifespan module can be launched and the following window opens up.

First, the module requires the choice of a feature set from the dropdown menu. Second, a CONDITION needs to be
defined analog to the LifespanDesign module.

By default, the MaxLifespan will look up lifespan and design maps which are stored in the folder
RiverArchitect/LifespanDesign/Output/Rasters/CONDITION/. This input directory can be modi-
fied by clicking on the Change input directory button. The MaxLifespan will automatically look for Raster
files beginning with “lf” or ds and containing the shortname of the considered features (see shortname list in the

51

https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/LifespanDesign

River Architect, Release latest

feature group overview). Please note that Raster names that do not start with either lf or ds and/or that do not contain
the complete shortname of the considered features are not recognized by MaxLifespan. The background image of the
maximum lifespan maps also refers to lifespan and design maps and corresponds to the Raster RiverArchitect/
01_Conditions/CONDITION/back.tif. The mapping checkbox provides the optional creation of maps with
the creation of geofiles (Rasters and shapefiles). If the checkbox is selected, running the Geofile Maker also includes
the successive runs of the Layout Maker and Map Maker. It is recommended to keep this box checked (default) be-
cause maximum lifespan mapping is fully automated and the procedure is fast.Once all inputs are defined, click on
“Run” and “Verify settings” to ensure the consistency of the chosen settings. After successful verification, the selected
feature list and the verified condition change to green font. Three “Run” options exist in the drop-down menu:

• Run: Geofile Maker prepares the optimum lifespan Raster and associated feature polygons (shape-
files) in the directories RiverArchitect/MaxLifespan/Output/Rasters/CONDITION/ and ...
/Output /Shapefiles/CONDITION/

• Run: Map Maker prepares maximum lifespan map assemblies (pdfs) in the directory
RiverArchitect/02_Maps/CONDITION/ (more information on mapping).

12.2 Alternative run options

The principal run options of the GUI call the following methods:

1. Run: Geofile Maker calls action_planner.geo_file_maker

2. Run: Map Maker calls action_planner.map_maker

For batch-processing of multiple scenarios, it can be useful to run the geo_file_maker function in a standalone
script as follows:

1. Go to ArcGIS Pros Python folder and double-click one of the following: C:\Program Files\ArcGIS\
Pro\bin\Python\scripts\propy.bat or C:\Program Files\ArcGIS\Pro\bin\Python\
envs\arcgispro-py3\python.exe

2. Enter import os

3. Navigate to script directory using the command os.chdir("ScriptDirectory") Example: os.
chdir("D:/Python/RiverArchitect/MaxLifespan/")

4. Import the MaxLifespan module: import action_planner as ap

5. Launch Geofile Maker: ap.geo_file_maker(condition , feature type , args), where
args[0] is a boolean value for activating or deactivation of integrated PDF-mapping (default = False),
args[1] is a string that indicates the unit system (either “us” or “si”; default = “us”) and args[2]
can be an alternative input path of lifespan maps than the default directory (see above) Example: ap.
geo_file_maker(2008, "framework", True, "us", "D:/temp/") This command calls the
Geofile Maker for the condition “2008” for framework features, with activated mapping, U.S. customary units
and it sets the Raster input path to D:/temp/.

52 Chapter 12. Quick GUIde to maximum lifespan maps

River Architect, Release latest

12.3 Output

12.3.1 Geofiles

The principal output of the module’s Geofile Maker is one Raster called max_lf (stored in .../MaxLifespan/
Output/Rasters/CONDITION/) and one shapefile per analyzed feature containing polygons of the feature’s best
performing areas (stored in .../MaxLifespan/Output/Shapefiles/CONDITION/). Moreover, the module
produces Rasters with names corresponding to the lifespan/design Raster names and feature shortnames, which essen-
tially contain the same information as the feature shapefiles. These Raster files are side products from the production
of the feature shapefiles.

12.3.2 Mapping

The Map Maker uses predefined layout templates to overlay

• a background Raster (RiverArchitect/01_Conditions/CONDITION/back.tif),

• the best lifespan Raster (/MaxLifespan/Output/Rasters/CONDITION/max_lf.tif), and

• shapefiles of best-performing feature areas (/MaxLifespan/Output/Shapefiles/CONDITION/
lf_feat... or ds_feat...).

The module enforces overwriting of existing Raster and shapefiles in the output folder (/MaxLifespan/Output/
) and it tries to delete any existing content. Before running Map Maker, the layout templates are stored in
RiverArchitect/02_Maps/templates/river_template.aprx and they are named after the feature set
type. The mapping wiki pages provide a list of layout names and explain possibilities for modifying the symbology,
legend, or map extents. After running Map Maker, the map project file and PDFs are stored in RiverArchitect/
02_Maps/CONDITION/map_CONDITION_design.aprx. Anew modifications should be made within this
project file (.aprx), which is not overwritten, if River Architect identifies an existing CONDITION-project file.

12.4 Quit module and logfiles

The GUI can be closed via the Close dropdown menu if no background processes are going on (see terminal mes-
sages). The GUI flashes and rings a system bell when it completed a run task. If layout creation and/or mapping were
successfully applied, the target folder automatically opens. After execution of either run task, the GUI disables func-
tionalities, which would overwrite the results and it changes button functionality to open logfiles and quit the program.
Logfiles are stored in the RiverArchitect/MaxLifespan/ folder and named logfile.log. Logfiles from
previous runs are overwritten.

12.3. Output 53

River Architect, Release latest

54 Chapter 12. Quick GUIde to maximum lifespan maps

CHAPTER

THIRTEEN

WORKING PRINCIPLE

The Geofile Maker uses the CellStatistics (with “Max” argument) command of arcpy’s Spatial Analyst tool-
box to identify the best lifespans of features. In the case of features where only design Rasters are available (i.e.,
Raster units are either on/off (1/0) or dimensional indicators, for example, minimum grain sizes), the Geofile Maker
converts any non-zero value of the design Raster to 0.8. The value of 0.8 is an arbitrarily chosen identifier with the
hypothetical unit of years, where the only importance is that this identifier is larger than zero and smaller than 0.9.
Thus, the identifier is smaller than any lifespan value and the CellStatistics’s “Max” corresponds to the lifespan
value when lifespan Rasters are compared with design Rasters. In other words, the Geofile Maker prioritizes lifespan
Rasters over design Rasters. This choice was made because the data quality of lifespan Rasters is better (higher data
abundance) than the quality of design Rasters, considering that the data quality is a function of available layers (DEM,
morphological unit, grain size, hydraulic Rasters, etc.). Therefore, pixels where no lifespan value but a design value is
available to get assigned a value of 0.8. Finally, the 0.8-pixels are converted to the highest defined lifespan (see Lifes-
panDesign module) based on the assumption that if the feature is constructed corresponding to the design criteria, its
lifespan will be high. Note the difference: lifespan values are prioritized because of the better data quality and the
max-years-value of design Raster-only pixels applies to a chain of safe constructive assumptions potentially resulting
in high costs. Recall that Other bioengineering features can take three values: (1) max years, if the terrain
slope is greater than defined in the thresholds workbook and the depth to groundwater is lower than defined in the
thresholds workbook (cf. LifespanDesign); (2) 1.0 year, if the terrain slope is greater than defined in the thresholds
workbook and the depth to groundwater is greater than defined in the thresholds workbook; (3) NoData, if the terrain
slope is lower than defined in the thresholds workbook. Thus, where maximum lifespan maps indicate a 1.0-year lifes-
pan, bioengineering features that are independent of the depth to the groundwater table are required. Such features
typically imply the placement of angular boulders.

55

https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/LifespanDesign

River Architect, Release latest

56 Chapter 13. Working principle

CHAPTER

FOURTEEN

CODE MODIFICATION: ADD FEATURE SETS FOR MAXIMUM
LIFESPAN MAPS

The comprehensive MaxLifespan module provides flexibility regarding input directories, layout modifications and
mapping extents without modifications of the code. However, modifications of the feature sets (framework, toolbox
and complementary) require code modifications. The relevant python classes are in the file cFeatureActions.py,
notably class FrameworkFeatures(Director), class ToolboxFeatures(Director) and class
ComplementaryFeatures(Director). These classes all inherit from the Director class which identifies
and assigns lifespan and design Rasters in the input folder. The following code example indicates where single fea-
tures can be added or removed from feature sets. It is a generalized code sample where “Framework”, “Plants”,
“Other Bioengineering” and “Longitudinal connectivity” are replaced with “TYPE”. The feature FullName_i and
shortname_i must comply with the feature terminology because also the MaxLifespan module uses the centralized
feature identifier class that is stored in RiverArchitect/ModifyTerrain/cDefinitions.py.

class TYPEFeatures(Director):
This class stores all information about TYPE features
def __init__(self, condition, *args):

try:
check if args[0] = alternative input path exists
Director.__init__(self, condition, args[0])

except:
Director.__init__(self, condition)

self.names = ["FullName_1", "FullName_2", ..., "FullName_n"] #--CHANGE HERE
self.shortnames = ["shortname_1", "shortname_2", ..., "shortname_n"] #--

→˓CHANGE HERE
self.ds_rasters = self.append_ds_rasters(self.shortnames)
self.lf_rasters = self.append_lf_rasters(self.shortnames)

In addition, the choose_ref_layout(self, feature_type) function of the Mapper class in
RiverArchitext/.site_packages/riverpy/cMapper.py needs to be updated:

def choose_ref_layout(self, map_name):
type(map_name) == str
map_name = str(map_name)
if "lf" in map_name:

if not ("mlf" in map_name):
return "layout_lf"

else:
if "bio" in map_name.lower():

return "layout_mlf_bioeng"
if "maint" in map_name.lower():

return "layout_mlf_maintenance"
if "plant" in map_name.lower():

(continues on next page)

57

River Architect, Release latest

(continued from previous page)

return "layout_mlf_plants"
if "terra" in map_name.lower():

return "layout_mlf_terraforming"
...

Moreover, the choose_ref_map(self, feature_type) function of the Mapper class in
RiverArchitext/.site_packages/riverpy/cMapper.py needs to be updated:

def choose_ref_layout(self, map_name):
type(map_name) == str
map_name = str(map_name)

if "lf" in map_name:
if not ("mlf" in map_name):

return "layer_lf"
else:

if "bio" in map_name.lower():
return "layer_mlf_bioeng"

if "maint" in map_name.lower():
return "layer_mlf_maintenance"

if "plant" in map_name.lower():
return "layer_mlf_plants"

if "terra" in map_name.lower():
return "layer_mlf_terraforming"

...

This also requires the creation of the layout and layer in RiverArchitect/02_Maps/templates/
river_template.aprx and/or RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.
aprx.

58 Chapter 14. Code modification: Add feature sets for maximum lifespan maps

CHAPTER

FIFTEEN

RIVER REACH DEFINITIONS

Particular rivers or reaches for the analysis can be defined from the LifespanDesign, VolumeAssessment and ModifyTer-
rain modules, referring to: ModifyTerrain/.templates/computation_extents.xlsx The concerned
modules provide options for reach differentiation and limit calculations to defined particular reaches. These limitations
are automatically used by the other modules. This subdivision of the computation domain enables the analysis of up to
eight reaches per copy of River Architect. The below figure illustrates the workbook spreadsheet for reach delineation.
Changes can be effected by clicking on the Reaches dropdown menu and then DEFINE REACHES, or directly in
the folder ModifyTerrain/.templates/. In order to ignore any reach definitions, select IGNORE (use
Raster extents).

If the workbook is accidentally deleted or irreparable, incorrect modifications were made, there is an offline backup
copy available: ModifyTerrain/.templates/computation_extents - Copy.xlsx

ModifyTerrain/.templates/computation_extents.xlsx can be opened, for example, by click-
ing on the Reaches drop-down menu (ModifyTerrain module) and then “DEFINE REACHES”. The ex-
tents need to correspond to the input DEM coordinate and unit system types (e.g., a georeference may be
GRS_1980_Lambert_Conformal_Conic with the linear unit of Foot_US). If the reaches 00 to 07 align from the East to
the West, the Max x value of a reach corresponds to the Min x value of the next upstream reach. If a reach is situated
in the south of its upstream reach, its Max y value corresponds to the Min y value of the upstream reach. Such gap-
less transitions enable consistent mapping of DEM differences and excavation/fill volume calculations. After editing,
saving and closing the spreadsheet, the GUI window can be updated by clicking on the Reaches drop-down menu
and then “RE-BUILD MENU”. Whatever name is stored in the workbook, River Architect uses internal identifiers that
point at the rows in the spreadsheet, and therefore, output rasters are enumerated with tags r00, r01, . . . r07. All
reaches can be deselected by clicking on “CLEAR ALL” to add particular reaches only. If more than five reaches are
selected, the GUI truncates the list and displays Many / All.

59

https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/VolumeAssessment
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain

River Architect, Release latest

The code handlers for reaches are part of riverpy (RiverArchitect/.site_packages/riverpy/). The
Reaches class in cDefinitions.py flexibly sends reach information to all modules and reads reach information
using the Read class in cReachManager.py. The dictionaries and lists of the Reaches class include an additional
entry called "none": "none" / "Raster extents" to enable reach-independent analyses.

60 Chapter 15. River Reach Definitions

CHAPTER

SIXTEEN

MODIFY TERRAIN (TERRAFORMING)

• Introduction to the ModifyTerrain module

• Quick GUIde to terrain modifications

• Threshold value-based terraforming (widening and grading)

– Run

– Alternative run options

– Output

– Working principles

– Code modification

• River Builder

61

River Architect, Release latest

62 Chapter 16. Modify Terrain (terraforming)

CHAPTER

SEVENTEEN

INTRODUCTION

The ModifyTerrain module can (re)model existing terrain DEMs based on threshold values or using the River Builder
R package. Threshold value-based terraforming uses DEMs of existing rivers and applies either widening (berm
setback) or grading, primarily to enable plant survival (for phreatophytes). While the input DEMs are not necessarily
required to be part of a River Architect Condition, the definition of Conditions is still required because the module
uses maximum lifespan maps and depth to groundwater Rasters to identify candidate pixels for terraforming.

63

https://www.r-project.org/
https://github.com/RiverArchitect/RA_wiki/River-design-features#berms
https://github.com/RiverArchitect/RA_wiki/River-design-features#berms
https://github.com/RiverArchitect/RA_wiki/River-design-features#grading
https://en.wikipedia.org/wiki/Phreatophyte

River Architect, Release latest

64 Chapter 17. Introduction

CHAPTER

EIGHTEEN

QUICK GUIDE TO TERRAIN MODIFICATIONS

18.1 Main window set-up and run

The GUI start-up takes a couple of seconds because the module updates reach information from a spreadsheet until
the following window opens.

65

River Architect, Release latest

To start with the ModifyTerrain module, first a feature set must be chosen from the drop-down menu, which is currently
limited to “Widen” and “Grading”. Second, a Condition needs to be entered, which requires a click on the Verify
button to update the GUI. This behavior differs from the LifespanDesign and MaxLifespan modules and an ample
revision of the ModifyTerrain module will align to the lifespan modules in the future.

66 Chapter 18. Quick GUIde to terrain modifications

https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/MaxLifespan

River Architect, Release latest

18.2 Input: Set Reaches

This module enables analysis for specific river reaches, which can be renamed and the reach extents can be modified.
The module analyzes all reaches which are defined in a spreadsheet stored in ModifyTerrain/.templates/
computation_extents.xlsx. For omitting the reach fragmentation, select IGNORE from the Reaches drop-
down menu.

18.3 Input: Set Condition

For terrain modifications, the module requires an input topo (DEM), which it looks up in the RiverArchitect/
LifespanDesign/Input/CONDITION/ directory by default. The input directory can be modified by clicking
on the “Change input DEM directory (optional)” button. Note that the input folder needs to contain a GeoTIFF DEM
Raster with the name dem; other Raster names are not recognized and the input dem is crucial for any operation of
the module.

18.2. Input: Set Reaches 67

River Architect, Release latest

68 Chapter 18. Quick GUIde to terrain modifications

CHAPTER

NINETEEN

THRESHOLD VALUE-BASED TERRAFORMING: WIDENING AND
GRADING OPTIONS

The “Widen” and “Grading” features use the maximum required distance to the groundwater table, which is admissible
for plantings. These threshold values are defined in the LifespanDesign module’s workbook RiverArchitect/
LifespanDesign/Input/.templates/threshold_values.xlsx. The prior run of the MaxLifespan
module is required to enable ModifyTerrain reading Rasters containing the keywords grade or widen from the
folder RiverArchitect/MaxLifespan/Output/Rasters/CONDITION/. Moreover, a depth to ground-
water table Raster (GeoTIFF format) with the name d2w.tif is required in the directory RiverArchitect/
01_Conditions/CONDITION/ (use the Get Started’s Populate Condition function to create a depth to the
groundwater Raster). The directory of maximum lifespan and depth to groundwater Rasters can be modified by click-
ing on the Change feature max. lifespan Raster directory (optional) button. This directory
needs to contain GeoTIFF-Rasters, which have the keywords grade or widen in their filename.

19.1 Run

All run options in the Run dropdown menu enables the Threshold-based DEM modification when
Reaches, Features, and a CONDITION were defined.

19.2 Alternative run options

The ModifyTerrain module has no standalone statement and it is recommended to use the GUI for launching the
modules routines. If needed, the module can alternatively be imported and used as python package as follows:

1. Go to ArcGIS Pros Python folder and double-click one of the following: C:\Program Files\ArcGIS\
Pro\bin\Python\scripts\propy.bat or C:\Program Files\ArcGIS\Pro\bin\Python\
envs\arcgispro-py3\python.exe

2. Enter import os

3. Navigate to Script direction using the command os.chdir("ScriptDirectory") Example: os.
chdir("D:/Python/RiverArchitect/ModifyTerrain/")

4. Import the module: import cModifyTerrain as cmt

5. Instantiate a ModifyTerrain object: mt = cmt.ModifyTerrain(condition , unit_system,
feature_ids , topo_in_dir , feat_in_dir , reach_ids) unit_system must be either
“us” or “si” feature_ids is a list of features shortnames topo_in_dir is an input directory for DEM and

69

https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/River-design-features#introduction-and-feature-groups

River Architect, Release latest

depth to groundwater table Rasters feat_in_dir is an input directory for feature max. lifespan Rasters; for
custom DEMs feat_in_dir can be a dummy directory reach_ids is a list of reach names to limit the
analysis

6. The DEM Modification is launched by calling the ModifyTerrain object that outputs the calculation logfile with
volume change information: logfile = mt()

7. The analysis is limited to running the Volume Calculator when the ModifyTerrain object is called with argu-
ments: logfile = mt(True, path_to_modified_DEM)

19.3 Raster Output

The module creates Rasters of modified DEMs and terrain difference Rasters for grading and/or widen features in the
directory ModifyTerrain/Output/Rasters/CONDITION/). Raster names contain a reach identifier (r00,
r01, . . . r07 corresponding to spreadsheet rows 6–13), part of the features shortnames. In addition, terrain difference
Raster, "d" with either "neg" for excavation or "pos" for fill.

19.4 Mapping

Please note that automated mapping is currently deactivated for the ModifyTerrain module. For mapping graded or
widened terrain, use the VolumeAssessment module and link the ModifyTerrain output Rasters to the ArcGIS Pro
project file RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx. The relevant lay-
out names for the ModifyTerrain module are:

• volumes_grade_neg for mapping the terrain differences of parametrically (threshold-based) floodplain
grading within the Modify Terrain module (only excavation neg is meaningful)

• volumes_widen_neg for mapping the terrain differences of parametrically (threshold-based) river widening
within the Modify Terrain module (only excavation neg is meaningful)

19.5 Working principles

The module can lower the terrain for grading and/or widen features to make relevant areas adequate
for plantings. It looks up the maximum possible depth to groundwater for the considered plant-
ing types in RiverArchitect/LifespanDesign/Input/.templates/threshold_values.xlsx,
cells J6:M6. The required lowering dz results from the minimum depth to groundwater value of the
latter cells: required_d2w = min([plant1.threshold_d2w_up, plant2.threshold_d2w_up,
plant3.threshold_d2w_up, plant4.threshold_d2w_up]) The condition DEM (act_dem) is
lowered using the arcpy’s spatial analyst: new_dem = Con((d2w > required_d2w), Float(act_dem
- (d2w - required_d2w)), act_dem)

70 Chapter 19. Threshold value-based terraforming: Widening and Grading options

https://github.com/RiverArchitect/RA_wiki/River-design-features#grading
https://github.com/RiverArchitect/RA_wiki/River-design-features#berms

River Architect, Release latest

19.6 Code modification: Add routines for automated DEM modifica-
tion

Other routines for the automated generation of modified terrains can be added as follows:

• Create new function in the ModifyTerrain class (file ModifyTerrain/cModifyTerrain.py), which
contains routines for creating a new DEM, for example:

def create_new_dem(self, feat_id, extents):
self.logger.info("")
feature_name = self.features.feat_name_dict[feat_id]
self.logger.info("* * * * * * " + feature_name.capitalize() + " * * * * * *

→˓")
set arcpy env
arcpy.gp.overwriteOutput = True
arcpy.env.workspace = self.cache
if not (type(extents) == str):
try:

XMin, YMin, XMax, YMax
arcpy.env.extent = arcpy.Extent(extents[0], extents[1], extents[2],

→˓extents[3])
except:
self.logger.info("ERROR: Failed to set reach extents.")
return (-1)

else:
arcpy.env.extent = extents

arcpy.CheckOutExtension('Spatial') # check out license if needed

get feature maximum lifespan raster (or any other input raster):
feat_act_ras = self.get_action_raster(feat_id)
set NoData values to 0:
feat_ras_cor = Con(IsNull(feat_act_ras), self.null_ras, feat_act_ras)
self.logger.info(" >> Calculating DEM after terrain " + feature_name + " ... ")

assign a dem for modification (see descriptions below)
if self.raster_info.__len__() > 0 and not ("diff" in self.raster_info):
use modified DEM if there was a prior automated modification
self.logger.info(" ... based on " + str(self.raster_info) + "-DEM ... ")
dem = self.raster_dict[self.raster_info]
...add other required Rasters

else:
use condition DEM if there was no prior raster modification
dem = self.ras_dem
...add other required Rasters

IMPLEMENT FORMULAE HERE
new_dem = ...some function...
calculated difference DEM for volume calculation
new_dem_diff_neg = ...
new_dem_diff_pos = ...

update class dictionaries (communicate modifications)
self.raster_dict.update({feat_id[0:3] + "_diffneg": new_dem_diff_neg})
self.raster_dict.update({feat_id[0:3] + "_diffpos": new_dem_diff_pos})
self.raster_info = feat_id[0:3]
self.raster_dict.update({self.raster_info: new_dem})

(continues on next page)

19.6. Code modification: Add routines for automated DEM modification 71

River Architect, Release latest

(continued from previous page)

arcpy.CheckInExtension('Spatial') # release license if necessary

Note:

+ The `self , feat_id , extents` arguments are required for the implementation in
→˓the call-routine, where is a [features shortnames](River-design-features
→˓#introduction-and-feature-groups) `extent` and is an `arcpy.Extent` variable that
→˓limits DEM creation to this extent.

+ `self.logger.info()` sends messages to the logger, which are also printed on the
→˓*Python* terminal.

+ `dem = self.raster_dict[self.raster_info]` uses the latest DEM version; this is
→˓the `condition` DEM if no other terrain modification was applied before. Otherwise,
→˓for example if "grading" was used for the automated terrain modification before
→˓this function is used, `dem = self.raster_dict[self.raster_info]` points to the
→˓terrain DEM after grading.

• Implement the new function in the modification manager:

def modification_manager(self, feat_id):
if not(self.reach_delineation):

extents = "MAXOF"
else:

try:
extents = self.reader.get_reach_coordinates(self.reaches.dict_id_int_id[self.

→˓current_reach_id])
except:

extents = "MAXOF"
self.logger.info("ERROR: Reach delineation recognized but not identifiable in

→˓input
START CHANGES FROM HERE ON
if ("grad" in feat_id) or ("wide" in feat_id):

self.lower_dem_for_plants(feat_id, extents)
if ("feature_shortname" in feat_id):

self.create_new_dem(feat_id, extents)

• Save edits

• The adapted code can now be executed using the alternative run options, where feature_ids =
["shortname of new feature"]. Hint: The new method can also be implemented in the
GUI by adding self.featmenu.add_command(label="New Feature", command=lambda:
self.define_feature("new ID") to def __init__(...) of the FaGui() class in the file
modify_terrain_gui.py. This requires adding an if not(feature_id == "new ID"): ...
else: ... statement in the self.define_feature function according to the function environment.

72 Chapter 19. Threshold value-based terraforming: Widening and Grading options

CHAPTER

TWENTY

RIVER BUILDER

Continue reading on River Builder’s own Wiki page.

73

River Architect, Release latest

74 Chapter 20. River Builder

CHAPTER

TWENTYONE

RIVER BUILDER

• Introduction

• Create Input Files

• Select Input Files

• Run

• Output

• More about River Builder

75

River Architect, Release latest

76 Chapter 21. River Builder

CHAPTER

TWENTYTWO

INTRODUCTION TO RIVER BUILDER

River Builder is an R package, which is available on CRAN. This R package emulates near-census natural rivers
as a function of site-specific, reach-averaged, geometric parameters. Pasternack et al. (2018a, 2018b) introduce
the ecomorphological and river classification principles implemented in River Builder. The geometric parameters
constitute synthetic river valleys, which represent nature-like alluvial channel beds and floodplains. The conceptual
approach for designing synthetic river valleys with River Builder is described by Brown and Pasternack (2019) and
Brown et al. (2014).

Synthetic river valley created with River Builder (credits: Gregory B. Pasternack).

The synthetic river valley concept produces geodata that can be imported in GIS software (see above illustration)
but without reference to real-world coordinates and hydraulic boundary conditions. The boundary conditions for
River Builder are defined by a user-defined input file and River Architect enables the creation of such input files with
graphical support. As a result, River Builder can be run within River Architect (therefore rpy2 is required). We are

77

http://pasternack.ucdavis.edu/research/model-codes/river-builder
https://www.r-project.org/
https://cran.r-project.org/web/packages/RiverBuilder/index.html
https://www.r-project.org/
https://onlinelibrary.wiley.com/doi/full/10.1002/esp.4411
https://onlinelibrary.wiley.com/doi/full/10.1002/esp.4410
http://pasternack.ucdavis.edu/research/model-codes/river-builder
http://www.sciencedirect.com/science/article/pii/S0012825218306160
http://www.sciencedirect.com/science/article/pii/S0169555X14001081
http://pasternack.ucdavis.edu/research/model-codes/river-builder

River Architect, Release latest

working on automating the creation of input files in River Architect to the extent that synthetic valleys can be translated
into real-world coordinates and reflect hydraulic conditions of real rivers.

Please note that River Builder has an own detailed user manual. This wiki primarily describes the usage of River
Builder within River Architect.

To use the River Builder interface within River Architect, click on the Morphology tab and go to the
ModifyTerrain sub-tab (default). Selecting the none Condition (confirm with a click on Select Condition)
enables (unfreezes) the RIVER BUILDER frame.

78 Chapter 22. Introduction to River Builder

https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf

CHAPTER

TWENTYTHREE

CREATE INPUT FILES

Click on the Create RB Input.txt File button to create a new input file for River Builder. The following
window will pop up.

79

River Architect, Release latest

Make sure to define an input file name (top of the popup window) without entering a file ending. Define all required
parameters (i.e., all parameters without any asterisk* in the left column of the popup window). A click on the Info
buttons opens the parameter descriptions (adapted from River Builder’s user manual).

The following list summarizes the required parameters and their default values (original descriptions from River
Builder’s user manual):

• DOMAIN PARAMETERS (IN METERS)

– Datum: FLOAT [1.0=default] - a fixed starting point of operation to measure changes of a specific property.

80 Chapter 23. Create Input Files

https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf
https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf
https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf

River Architect, Release latest

Used for thalweg elevation. This datum is located at the downstream end of the synthetic river valley, and
then the river goes up from there. Thus, if the datum is set as any number > 0, then it is guaranteed that
all elevations in the valley will also be > 0. You may set any arbitrary number you wish. If you want to
estimate the total elevation range of the thalweg along the river, then simply multiply your Valley Slope
input by the Length input and that will give you the overall elevation range of the thalweg. For example,
for a 1000 m long channel and a Valley slope of 0.01, then thalweg elevation range is going to span 10 m.

– Length: FLOAT [100.0=default] - the length of the x-axis of the river valley. This is only the channel length
if the river is straight. If the river is sinuous, then this length is the valley length and the actual channel
length will depend on the sinuosity. Sinuosity is computed by the model and reported in the Data.csv file,
so you can compute the final channel length if you want to know it.

– X Resolution: FLOAT > 0.0 (e.g., 1.0 [default] = 1-m resolution) - the resolution of equally spaced data
points spaced along the X-axis in units of meters. There is no limit to how fine the point spacing can
be, other than computation time for your computer. The smaller this number, the longer the code will
take to run. Use your judgment to decide how much detail you need given the scale of your river and the
resolution of the sub-reach variability functions you are applying. There is no need for extra detail if the
river is easily interpolated with fewer data.

– Channel XS Points: INTEGER > 1 [23=default] - the number of equally spaced points defining the chan-
nel’s cross-section. This is not applied outside the channel, only in it. Beyond the channel, River Builder
provides you with points along the major breaklines, and then you can interpolate the terrain between those
on your own later using a TIN approach. For field data collection in a U-shaped channel, people commonly
use approx. 15-30 points. An odd number is wise if you want to have a line of output points exactly in the
center of the channel.

• DIMENSIONLESS PARAMETERS (-)

– Valley Slope Sv: FLOAT [0.001=default] - the slope of the valley floor along the X-Z plane. It is used to
calculate the overall channel slope with a given sinuosity and govern the incline/decline of the surrounding
valley.

– Critical Dimensionless Bed Shear (aka “Shields) Stress* *, cr, D50: FLOAT [0.047=default] - If you are
going to specify a bankfull depth, then set this value to zero. If you want to use the classic equation to
establish a bankfull depth to just yield the shear stress needed to mobilize the bed for a specified bed
material grain size, then you can use this. Common values used for this parameter are 0.03, 0.045, 0.047,
or 0.06, depending on what size fraction you want to insure would be mobilized at bankfull flow. The
equation that uses this input is Eq. (4) in Brown et al. (2014). Read more on the dimensionless critical bed
shear stress for example in Lamb et al. 2008.

• CHANNEL PARAMETERS (METERS)

– Bankfull Width Wbf: FLOAT > 0.0 [10.0=default] - the distance between bank tops on the X-Y plane, not
counting any sub-reach variability functions.

– Bankfull Width Minimum: FLOAT >= 0.0 [5.0=default] - the minimum distance between the bank tops
on the X-Y plane. This variable is specified to protect the user from making a mistake with sub-reach
variability functions in which the banks would cross over, yielding an impossible outcome. This ensures
that the river never has a zero or negative width. If you are confident in what you are doing, then you can
set this to zero.

– Bankfull Depth Hbf, A: FLOAT [1.0=default] - the height between the thalweg elevation and then bank
top and thalweg on the X-Z plane, not counting any sub-reach variability functions. Depending on channel
slope and variability functions, the local bankfull depth can differ from this value.

– Median Sediment Size D50: FLOAT >= 0.0 [0.01=default] - the particle size of the material comprising
the river bed. This is only used if one has left Hbf = 0 and wants to compute the bankfull depth value
associated with the initialization of bed material transport for this specified grain size. This value is used
in conjunction with the critical Shields stress value as explained earlier.

81

http://www.sciencedirect.com/science/article/pii/S0169555X14001081
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2007JF000831

River Architect, Release latest

• FLOODPLAIN PARAMETERS (METERS)*:

– Floodplain Width*: FLOAT >= 0.0 [default] - double the horizontal distance from the bank top on one side
of the river to the outer edge of the floodplain on the same side of the river. Note that if the floodplain has
a lateral slope, then this value is still just the horizontal distance, not the slope distance on the floodplain
surface. This value is the sum of horizontal floodplain distances for both sizes of the river, so keep that in
mind when designing your floodplain. If this number is zero, then there is no floodplain, which yields a
confined valley/canyon scenario. If it is a big number, then there is a very wide floodplain. This applies
symmetrically to both sides of the river. If you want asymmetric floodplains, then that is handled with
independent Left/Right Floodplain sub-reach variability functions.

– Outer Floodplain Edge Height*: FLOAT >= 0.0 [default] - the incremental increase in elevation from the
bank top to the outer edge of the floodplain on the Y-Z plane. If this number is close to zero, then the
floodplain is essentially flat. If it is high, then the floodplain is sloped.

– Terrace Width*: FLOAT >= 0.0 [default] - double the horizontal distance from the outer edge of the
floodplain on one side of the river to the outer edge of the terrace on the same side of the river, making it
terrace width. This value is the sum of horizontal terrace distances for both sizes of the river, so keep that
in mind when designing your terraces. This applies symmetrically to both sides of the river.

– Outer Terrace Edge Height*: FLOAT >= 0.0 [default] - the incremental increase in elevation from the
outer edge of the floodplain to the outer edge of the terrace on the Y-Z plane. If this number is close to
zero, then the terrace is essentially flat. If it is high, then the terrace is sloped.

– Boundary Width*: FLOAT >= 0.0 [default] - double the horizontal distance from the outer edge of the
terrace on one side of the river to an arbitrary point out on the valley floor on the same side of the river.
This allows for a flat, wide domain that could be another terrace or just the open landscape beyond the
alluvial river valley.

• USER-DEFINED FUNCTIONS*

– User Functions*: OWN WINDOW (multiple assignments possible [no default]) - Three types of functions
(Sine, Cosine, and SineSQ) provide periodic oscillations. As simple as those are individually, remember
that you can add as many of them as you want into one overall function, using addition, subtraction, etc. As
shown in Brown et al. (2014), it is possible to get some very interesting and meaningful variability patterns
with 2-4 SIN() functions added together, using different values for frequency, amplitude, and phase. One
way to ascertain what those parameter value could be would be to perform harmonic analysis on real series
of river variables, such as bed elevation, width, meander centerline, etc. You can extract all the periodic
functions you want from that kind of analysis and use those in your design to whatever degree you wish.
Because rivers often do exhibit linear trends in variables, such as width and depth, we have added the
linear function for users to create that effect. Sometimes you want to have a function that is deterministic
and oscillating, but non-periodic. The best application for this type of function would be for the meander
centerline because channel alignment is not going to be truly periodic. To achieve this, we provide a Perlin
noise function. To find out what sinuosity you get from a particular set of Perlin parameters, you have to
run River Builder and look at the Data.csv file. That is a bit clunky, but it works.

• SUB-REACH VARIABILITY PARAMETERS (REQUIRES USER-DEFINED FUNCTIONS)*

– Centerline Curvature Function*: USER FUNCTION [no default] (multiple assignments possible) - Nor-
mally the sub-reach variability functions for centerline curvature would be set equal to those governing the
meandering centerline. However, one application of the curvature value is with controlling the asymmetry
of a channel’s cross-sectional shape. To provide greater flexibility with how a river’s XS shape changes
along the river, we have created a decoupled centerline curvature variable. This variable does not affect the
channels meandering. It only affects how channel asymmetry varies down the river. For example, let’s say
that you did not want the deepest part of the cross-section to be at the outer bend of a meander, then you
could use this to put the deepest part anywhere you want governed by the available variability functions.
This is a highly complex tool to control compared to others, so only use it if you know what you are doing
with your river design concept.

82 Chapter 23. Create Input Files

http://www.sciencedirect.com/science/article/pii/S0169555X14001081

River Architect, Release latest

– Left Floodplain Function*: USER FUNCTION [no default] (multiple assignments possible) - whereas
the channel is treated as one entity having a width, the floodplains have been segregated into independent
units. This function governs variability in the location of the outer edge of the river left (i.e., left looking
downstream) floodplain.

– Right Floodplain Function*: USER FUNCTION [no default] (multiple assignments possible) - governs
variability in the location of the outer edge of the river left (i.e., left looking downstream) floodplain.

– Meandering Centerline Function*: USER FUNCTION [no default] (multiple assignments possible) - gov-
erns the shape of the river’s tortuous flow path (i.e., meandering or sinuosity) on the X-Y plane. At this
time, it is not possible to make gooseneck loops, but the available functions offer a good range of flexibil-
ity to mimic diverse sinuosity values. If you do not care about the details of the pattern, but only want to
match a sinuosity value, then it is recommended that you use the Perlin function and iteratively adjust the
parameters until the sinuosity value in the Data.csv output file matches your target value.

– Thalweg Elevation Function*: USER FUNCTION [no default] (multiple assignments possible) - governs
undulations in the bed elevation along the Thalweg on the X-Z plane. Used to create riffle-pool couplets.

– Bankfull Width Function*: USER FUNCTION [no default] (multiple assignments possible) - governs the
downstream variability in the distance between bank tops on the X-Y plane. If you create an undulating
function, be very careful that the banks do not cross over to create negative channel widths. We have
implemented a minimum bankfull width variable to help avoid this, but it is wise to reason out the ampli-
tude of your width function and not have to rely on that safety net. For longer river segments, try a linear
function that increases the width in the downstream direction, consistent with geomorphic theory. You can
find parameters for the downstream width increase in the geomorphic literature quite easily.

• CROSS SECTIONAL SHAPE

– Cross-Sectional Shape: STRING (“AU” [default], “SU” or “TZ”) - The shape of the cross-section on the
Y-Z plane. Input must be AU, SU, or TZ(n), where n is the number of edges that defines the length of the
trapezoidal base such that 0 < n < (Y-Z Increments). It is recommended that unless you really know what
you are doing with AU or are starting from a good AU template file, then only use SU or TZ. If AU is
selected, specify a Centerline Curvature. If TZ is selected, specify n: - Triangle: n = 0 - Trapezoid: 1 <= n
<= (Y-Z Increments-2) - Rectangle: (Y-Z Increments-3) <= n <= (Y-Z Increments)

*All parameters with an asterisk are optional.

Please note: Each undefined parameter is assigned a default value and all parameters are METRIC. River Architect
uses an internal conversion factor when U.S. customary units are selected in the main GUI’s Units dropdown menu.

A click on CREATE INPUT FILE writes the input file to RiverArchitect/ModifyTerrain/
RiverBuilder/INPUT_FILE_NAME.txt.

83

River Architect, Release latest

84 Chapter 23. Create Input Files

CHAPTER

TWENTYFOUR

SELECT INPUT FILES

Once an input file is created, it can be selected by clicking on the Select RB Input.txt File button. Also,
input files can be used when they were not created with the above described GUI, but it is important that these input
files are located in RiverArchitect/ModifyTerrain/RiverBuilder/INPUT_FILE_NAME.txt. This
restriction is necessary because River Builder can only read input files that are located in the same directory as the
River Builder R script (riverbuilder.r).

85

River Architect, Release latest

86 Chapter 24. Select Input Files

CHAPTER

TWENTYFIVE

RUN RIVER BUILDER WITHIN RIVER ARCHITECT

River Architect uses the rpy2 package to load River Builder (also refer to the River Architect installation instructions).

With an input file selected, a click on the Run River Builder button launches River Builder. Running River
Builder may take a couple of minutes. Pay attention to messages on the console, which may indicate if River Builder
had issues with the provided inputs.

87

https://rpy2.readthedocs.io/
http://pasternack.ucdavis.edu/research/model-codes/river-builder

River Architect, Release latest

88 Chapter 25. Run River Builder within River Architect

CHAPTER

TWENTYSIX

OUTPUT

River Builder writes output files to RiverArchitect/ModifyTerrain/Output/RiverBuilder/
INPUT_FILE_NAME/ (note that the output is stored in the Output folder, which is one level above the
RiverBuilder folder). The following output files are produced (original descriptions from River Builder’s user
manual):

• BoundaryPoints.csv Contains keys that map to specific points in CartesianCoordinates.csv that comprise the
boundary around a river’s floodplain. This is an essential input file for ArcGIS.

• CartesianCoordinates.csv Contains comma-separated XYZ coordinates for the synthetic river valley. This is an
essential input file for ArcGIS.

• Data.csv Contains coefficients of variation, averages, standard deviations, channel slope, and other important
information.

• ChannelElevation.png Displays the elevation of the river’s channel meander.

• CrossSection.png Displays the river’s cross-section at its midway point. The cross-section is bounded above by
the river’s bank top and below by the thalweg.

• GCS.png Displays the geometric covariance structures of bankfull width and thalweg elevation; thalweg eleva-
tion and the channel meander.

• LongitudinalProfile.png Displays the side view of the river which consists of valley top, valley floor, bank top,
and thalweg elevation.

• Planform.png Displays the bird’s eye view of the river which consists of the channel meander, channel bank,
valley floor, and valley top.

For rendering the output into 3D graphs, follow the following instructions from the River Builder’s user man-
ual (the steps refer to the usage of ArcMap and a Python script that is provided along with River Builder and
included in the River Architect standard installation RiverArchitect/ModifyTerrain/RiverBuilder/
RiverBuilderRenderer.py):

1. Open ArcMap. Look for the Catalog tab on the far right of the interface. If it does not show, go to Windows
-> Catalog from the top menu to have it opened.

2. In Catalog, locate the directory in which the River Builder toolbox is stored. If the directory is not visible,
select Connect to Folder from the Catalog toolbar, and select the desired directory.

3. Once the desired directory is visible in Catalog, expand the toolbox it contains, right-click the River
Builder tool, and go to Properties. Under the Source tab, enter the location of where the Python script
RiverArchitect/ModifyTerrain/RiverBuilder/RiverBuilderRenderer.py is stored in
your local machine. Click OK.

4. The River Builder toolbox is now available for use on ArcMap. Select it, and a window will appear. Enter values
for the following four inputs:

• Name: The label applied to each output file, i.e. <Name>_Layer.shp, <Name>_Boundary.shp, etc.

89

https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf
https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf
https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf
https://cran.r-project.org/web/packages/RiverBuilder/RiverBuilder.pdf
https://github.com/riverarchitect/program/blob/master/ModifyTerrain/RiverBuilder/RiverBuilderRenderer.py

River Architect, Release latest

• Output Folder: The location in which an output folder named <Name> will be produced. That folder will
contain all the output files generated by the script.

• XYZ File: The Cartesian coordinates file produced by the R code.

• Boundary Points: The boundary points file produced by the R code.

1. When all the inputs are filled, click OK, and the script will run. After it is finished running, go to the <Name>
folder in the output folder that you specified to access the newly generated shape and raster files.

90 Chapter 26. Output

CHAPTER

TWENTYSEVEN

ABOUT

River Builder is maintained by Prof. Gregory B. Pasternack, his co-workers, supporters, and friends. Please visit their
website to learn more about the general concepts and updates of River Builder.

91

http://pasternack.ucdavis.edu/research/model-codes/river-builder

River Architect, Release latest

92 Chapter 27. About

CHAPTER

TWENTYEIGHT

VOLUME CHANGE ASSESSMENT

• Introduction

• Quick GUIde to terrain assessment

– Main window set-up and run

– Reaches

– Mapping

– Run

– Output

• Working principle

• Code modification: Change sensitivity threshold (lod) for terrain modification detection

93

River Architect, Release latest

94 Chapter 28. Volume Change Assessment

CHAPTER

TWENTYNINE

INTRODUCTION

The VolumeAssessment module compares two input DEM Rasters and calculates the volumetric change between both
Rasters. The assessment produces workbooks containing reach-wise or project-wise volume differences (excavation
and fill), terrain change DEMs, and pdf-maps. This chapter explains the module application in the following sections:

• Quick Guide to the application of the GUI with descriptions of input requirements and output descriptions.

• Outputs and procedures for pdf-map generation.

• Code conventions and extension.

Please note that an ArcGIS Pro 3D extension is required for running this module.

95

River Architect, Release latest

96 Chapter 29. Introduction

CHAPTER

THIRTY

QUICK GUIDE TO VOLUME ASSESSMENT

30.1 Main window set-up and run

The GUI start-up takes a couple of seconds because the module updates reach information from an external workbook.

97

River Architect, Release latest

To start with the VolumeAssessment module, first, select a reach. The subdivision of the subsequently selected Rasters
can be omitted by select IGNORE from the Reaches drop-down menu. Second, select an input DEM Raster (Geo-
TIFF). Third, select a modified DEM Raster (GeoTIFF) that is to be compared with the input DEM Raster.

98 Chapter 30. Quick GUIde to Volume Assessment

River Architect, Release latest

30.2 Input: Set Reaches

For changing reach definitions, please refer to the reach wiki pages. Keep in mind that changing reach definitions also
affects the LifespanDesign and the Modify Terrain modules. A particularity of this module is that it enables running
analysis for specific river reaches, which can be renamed and the reach extents can be modified. By default, the
module analyzes all reaches which are defined in a spreadsheet stored in /VolumeAssessment/.templates/
computation_extents.xlsx.

30.3 Mapping

The Run: Map Maker uses layout files stored in the ArcGIS Pro project file RiverArchitect/02_Maps/
templates/river_template.aprx. Running Map Maker for the first time for a CONDITION will pro-
duce a copy of the template project file (.aprx) that is stored in RiverArchitect/02_Maps/CONDITION/
map_CONDITION_design.aprx. Before the running Map Maker for the first time for a CONDITION ,
ensure that the background layer points at the good background raster (typically this is RiverArchitect/
01_Conditions/CONDITION/back.tif) The relevant layout names for the VolumeAssessment module are:

• volumes_cust_neg for mapping required excavation (or scour / erosion) of the input DEM to achieve the
modified DEM.

• volumes_cust_pos for mapping required fill (or deposition) in the input DEM to achieve the modified
DEM.

The VolumeAssessment module produces maps with the extents of the input raster by default. Refer to the Mapping
wiki for more information on map extents, symbology, and legend modifications.

30.2. Input: Set Reaches 99

River Architect, Release latest

30.4 Run

The Run drop-down menu includes the Volume Calculator and the Map Maker options. Please note that the
Map Maker is activated only after the Volume Calculator was executed in the current River Architect ses-
sion. Optionally, the bottom checkbox can be activated for automatically running the map creation with the Volume
Calculator.

30.5 Output

Because the initial state and modified DEM Rasters may be freely selected and not necessarily correspond to a River
Architect Condition, the VolumeAssessment uses PSEUDO_CONDITIONS that are derived from the directory and
name of the modified DEM Raster.

30.5.1 Rasters

The module creates terrain change (volume difference) Rasters in the directory VolumeAssessment/Output/
PSEUDO_CONDITION/). Raster names contain a reach identifier (r00, r01, . . . r07 corresponding to spreadsheet
rows 6–13) when one or several reaches were selected. Otherwise, the Raster names start with a "ras" string.
Moreover, the Raster names include an "exc" or "fill" string to indicate excavation (or scour / erosion) and fill,
respectively.

30.5.2 Maps

The Map Maker (or activated checkbox) produces pdf maps of volume difference Rasters in RiverArchitect/
02_Maps/PSEUDO_CONDITION/ (map preparation steps are above described and in the [[Mapping] wiki]).

30.5.3 Workbook (spreadsheets)

The volumetric differences in m3 or cubic yards are reach-wise or Raster-wise written to a workbook in the directory
VolumeAssessment/Output/PSEUDO_CONDITION/, where also the output Rasters are located. The work-
book template (volumes_template.xlsx) is located in VolumeAssessment/.templates/ and must not
be modified. When VolumeAssessment is run for the first time for a PSEUDO_CONDITION, it creates a copy of
the workbook template, which is called PSEUDO_CONDITION_volumes.xlsx. VolumeAssessment makes two
copies of the template sheet for excavation and fill, respectively. Thus, one of the spreadsheet copies is called
excavate_YYYYMMDDHHhMM and lists the reach-wise / Raster-wise excavation volumes in the chosen unit system.
The other spreadsheet copy is called fill_YYYYMMDDHHhMM and lists the reach-wise / Raster-wise fill volumes in
the chosen unit system. The strings YYYYMMDD and HHhMM indicate the date and time of the program execution. Re-
peating runs of VolumeAssessment on the same modified DEM will append two more copies (excavate and fill) of the
template sheet with the date-time indicator. It is recommended to cut-paste PSEUDO_CONDITION_volumes.
xlsx in a VolumeAssessment/Products/ directory after every run to keep results well-arranged and to force
the module to create a new PSEUDO_CONDITION_volumes.xlsx file for every run.

100 Chapter 30. Quick GUIde to Volume Assessment

CHAPTER

THIRTYONE

WORKING PRINCIPLES

The modified DEM (PSEUDO_CONDITION) is subtracted from the input DEM to obtain difference DEMs indicating
the dz differences in elevation. The module uses a level of change detection lod of 0.99 ft (or 0.305 m) to
avoid the consideration of DEM imprecision because of pixel size-averaging (excavation): diff_dem_neg =
Con(Abs(input_dem - mod_dem)>= lod, Abs(input_dem - mod_dem), 0.0) (and vice versa
for fill). The excavation and fill volumes result from arcpy’s SurfaceVolume_3d function, which requires
an ArcGIS 3D extension: volume_excavation = arcpy.SurfaceVolume_3d(diff_dem_neg,
"", "ABOVE", 0.0, 1.0) volume_fill = arcpy.SurfaceVolume_3d(diff_dem_pos, "",
"ABOVE", 0.0, 1.0) The volume_... variables are stored in a list that is finally written to the output
workbook.

101

River Architect, Release latest

102 Chapter 31. Working principles

CHAPTER

THIRTYTWO

CODE MODIFICATION: CHANGE SENSITIVITY THRESHOLD (LOD)
FOR TERRAIN MODIFICATION DETECTION

The lod variable serves for the elimination of virtual terrain differences that may result from pixel sizes
and / or Raster transformations (see above explanations). The internal variable name for lod is self.
volume_threshold and it is defined in the initiator of the VolumeAssessment class (VolumeAssessment/
cVolumeAssessment). The assigned values of 0.99 ft (U.S. customary) or 0.305 m (SI metric) can be changed in
class VolumeAssessment() -> def __init__(self, ...): -> # set unit system paragraph`:

if self.units == "us":
self.convert_volume_to_cy = 0.037 #ft3 -> cy: float((1/3)**3)
self.unit_info = " cubic yard"
self.volume_threshold = 0.99 # ft -- CHANGE lod US customary HERE --

else:
self.convert_volume_to_cy = 1.0 # m3
self.unit_info = " cubic meter"
self.volume_threshold = 0.30 # m -- CHANGE lod SI metric HERE --

103

River Architect, Release latest

104 Chapter 32. Code modification: Change sensitivity threshold (lod) for terrain modification
detection

CHAPTER

THIRTYTHREE

STRANDING RISK ASSESSMENT

• Introduction to the Stranding Risk Module

• Quick GUIde to Stranding Risk Assessment

• Defining Travel Thresholds

• Methodology

– Interpolating Hydraulic Rasters

– Escape Route Calculations

– Calculating Disconnected Habitat Area

– Determining Qdisconnect

– Disconnection Frequencies

– Estimating Ramping Rates

• References

105

River Architect, Release latest

106 Chapter 33. Stranding Risk Assessment

CHAPTER

THIRTYFOUR

INTRODUCTION TO STRANDING RISK MODULE

The Stranding Risk module can be used to map areas susceptible to stranding and calculate stranding risk metrics for
a given fish species, lifestage, and flow reduction scenario. Output rasters include:

• wetted areas that become disconnected from the river mainstem

• discharge at which each area becomes disconnected

• average frequency at which each area disconnects

• habitat suitability of each area prior to disconnection

• estimated ramping rate

107

River Architect, Release latest

108 Chapter 34. Introduction to Stranding Risk Module

CHAPTER

THIRTYFIVE

QUICK GUIDE TO STRANDING RISK ASSESSMENT

109

River Architect, Release latest

To begin using the Stranding Risk module, first select a hydraulic Condition.

Note: In order to determine where velocity is a barrier to fish passage, the selected condition must include velocity
angle rasters. Otherwise, velocity barriers will not be considered. In order to create the disconnected_habitat
output raster, cHSI rasters must have already been calculated for the applied Condition and Physical Habitat using the
SHArC module. In order to create the disc_freq output raster, flows must have already been analyzed (Make flow
duration curves) for the applied Condition and Physical Habitat.

Next, select at least one Physical Habitat (fish species/lifestage) from the dropdown menu. The Physical Habitat
contains data specific to the fish species/lifestage. Physical Habitat data is used by the Stranding Risk module to
determine if fish are able to traverse wetted areas by accounting for the organism’s minimum swimming depth and

110 Chapter 35. Quick GUIde to Stranding Risk Assessment

River Architect, Release latest

maximum swimming speed (Physical Habitat data are also used by SHArC to determine habitat suitability). These data
can be viewed/edited via the drop-down menu: Select Physical Habitat –> DEFINE FISH SPECIES
(scroll to the “Travel Thresholds” section of the workbook).

Once the desired condition and Physical Habitat(s) are selected, choose model discharges Qhigh and Qlow. This
defines the range of discharges over which to apply the stranding risk analysis, simulating the changes in habitat
connectivity for a flow reduction from Qhigh to Qlow.

Next, input a time period for the downramping. This is the amount of time (in minutes) over which the downramping
is expected to occur. This parameter is used to estimate ramping rates as described in Estimating Ramping Rates.

Lastly, select an interpolation method. See Interpolating Hydraulic Rasters for more information.

For further explanation of the methodology used in the analysis, see Methodology.

Outputs are stored in StrandingRisk\Output\Condition_name\. These outputs include:

• interpolated rasters (h_interp, u_interp, va_interp): interpolated depth, velocity (magnitude), and
velocity angle rasters. See Interpolating Hydraulic Rasters for more information.’

Outputs specific to the applied flow reduction are stored in the subdirectory StrandingRisk\Output\
Condition_name\flow_red_Qhigh_Qlow. These outputs include:

• shortest_paths\: directory containing a raster for each model discharge in the range Qlow-Qhigh, indi-
cating the minimum distance/least cost required to escape to the river mainstem at Qlow, subject to constraints
imposed by the travel thresholds for the selected Physical Habitat. See Escape Route Calculations for more.

• disc_areas\: directory containing a shapefile for each model discharge indicating wetted areas which are
effectively disconnected at that discharge. See Calculating Disconnected Habitat Area for more.

• disconnected_area.xlsx: a spreadsheet containing plotted data of discharge vs disconnected area.

• disconnected_habitat_specieslifestage.tif: a raster showing all wetted areas which become
disconnected in the applied flow reduction scenario, weighted by the combined habitat suitability index (cHSI)
at Qhigh (before the flow reduction occurs). See Calculating Disconnected Habitat Area for more.

• Q_disconnect.tif: a raster showing the highest model discharge for which areas are disconnected from
the mainstem at Qlow. Locations that are not disconnected at any modeled discharge are assigned a value of
zero. Thus, this map indicates locations and discharges below which stranding risks may occur. See Determining
Qdisconnect for more.

• disc_freq.tif: a raster showing the historical frequency for which each area becomes disconnected, in
number of times per year, confined to the season of interest for the analyzed species/lifestage. See Disconnection
Frequencies for more.

• ramping_rate_time.tif: a raster showing the estimated ramping rate before disconnection occurs. See
Estimating Ramping Rates for more.

111

River Architect, Release latest

112 Chapter 35. Quick GUIde to Stranding Risk Assessment

CHAPTER

THIRTYSIX

DEFINING TRAVEL THRESHOLDS

Whether or not areas are considered to be connected/navigable for a given fish species/lifestage is dependent upon
travel thresholds that are defined in the Fish.xlsx workbook (see SHArC for more details). These include a mini-
mum swimming depth and maximum swimming speed. To view/modify the species/lifestage specific travel thresholds,
use the drop-down menu: “Select Physical Habitat” –> “DEFINE FISH SPECIES”.

113

River Architect, Release latest

114 Chapter 36. Defining Travel Thresholds

CHAPTER

THIRTYSEVEN

METHODOLOGY

37.1 Interpolating Hydraulic Rasters

The analysis begins by performing an interpolation of the water surface elevation across the extent of the DEM.
This step is taken in order to approximate how the water surface extends across floodplain areas, thus identifying
the presence of disconnected pools that would not be captured by steady-state hydrodynamic model outputs. The
interpolation is performed for each discharge as follows:

• The water depth raster is added to the DEM elevation to produce a water surface elevation (WSE) raster.

• the WSE is interpolated across the DEM extent using an Inverse Distance Weighted (IDW) interpolation scheme
on the 12 nearest neighbors.

• The DEM is subtracted from the interpolated WSE raster to produce an interpolated depth raster. Only positive
values are saved (negative values indicate an estimated depth to groundwater).

• Interpolated velocity and velocity angle rasters are created, where velocity is set to zero in the newly interpolated
areas.

• Interpolated rasters are stored in StrandingRisk\Condition_name\h_interp, StrandingRisk\
Condition_name\u_interp, StrandingRisk\Condition_name\va_interp. All interpolated
rasters are saved with a corresponding .info.txt file which records the interpolation method and input rasters
used in its creation.

The available interpolation methods are:

• IDW: Inverse distance weighted interpolation. Each null cell in the low flow depth raster is assigned a weighted
average of its 12 nearest neighbors. Each weight is inversely proportional to the second power of the distance
between the interpolated cell and its neighbor. Thus, the closest neighbors to an interpolated cell receive the
largest weights. This method was found to have the best balance of computational speed and accuracy when
tested via cross-validation.

• Kriging: Ordinary Kriging interpolation. This method also uses a weighted average of the 12 nearest neigh-
bors, but weights are calculated using a semi-variogram, which describes the variance of the input data set
as a function of the distance between points. A spherical functional form is also assumed for the fitted semi-
variogram. Kriging is the most accurate interpolation method if certain assumptions are met regarding normality
and stationarity of error terms. However, it is also the most computationally expensive method. This method
was found to have comparable accuracy compared to IDW, but with significantly higher computational costs.

• Nearest Neighbor: The simplest method, which sets the water surface elevation of each null cell to that of
the nearest neighboring cell.

115

River Architect, Release latest

37.2 Escape Route Calculations

The “shortest escape route” output maps (stored in the shortest_paths\ output directory) show the length/cost
of the shortest/least-cost path from each pixel back into the mainstem of the river channel at Qlow, accounting for
both depth and velocity travel thresholds. In this context, the mainstem is defined as the largest continuous portion of
interpolated wetted area deeper than the minimum swimming depth at Qlow. Conceptually, the shortest escape route
to the mainstem is found from each starting pixel as follows:

• If the starting pixel is already in the mainstem, it assigned a default value of zero. Otherwise, look at all wetted
pixels adjacent to the starting pixel.

• Apply depth and velocity travel criteria (see below).

• If both the depth and velocity travel criteria are satisfied, the fish is considered to be able to move from the
current pixel to the neighbor. An associated cost of traveling to the neighboring cell can also be computed.

• Apply this method iteratively to each reachable neighbor. The path which reaches a cell in the mainstem with
the smallest total cost is the least-cost path to the mainstem.

37.2.1 Applying Depth and Velocity Travel Criteria

The applied depth and velocity thresholds parameterize the ability of the target fish to travel throughout the river
corridor. The criteria to satisfy for travel from cell A to adjacent cell B are defined by three criteria:

• Domain criterion: both cells A and B are wetted.

• Depth criterion: depth at cell B is > d_{min}.

• Velocity criterion: the fish can overcome the current at cell A to reach cell B traveling at v_f

116 Chapter 37. Methodology

River Architect, Release latest

From the center of each cell, the area is divided into 8 octants corresponding to the 8 neighboring cells, with each
octant centered on the direction to its neighboring cell and spanning 45°. If it is possible to add the water velocity
vector () to a vector with the magnitude of the maximum swimming speed () to yield a vector () falling within an octant,
then the velocity threshold criteria is satisfied for travel to the corresponding neighboring cell. A specific example is
shown in this diagram where the resultant velocity vector points into the upper quadrant, thus the velocity threshold
criteria is satisfied for travel to the upper neighbor. Octants are colored blue/red based on whether the criteria is/is not
satisfied for travel in that direction.

Least cost path calculations are implemented in a computationally efficient way by constructing a weighted, directed
adjacency graph (stored as a dictionary) and then dynamically traversing the graph working outwards from the main-
stem to find shortest path lengths using Dijkstra’s algorithm (see explanation below):

37.2. Escape Route Calculations 117

River Architect, Release latest

Applying the travel criteria at each cell yields a set of neighboring cells for which travel is possible. Each cell which
can reach other cells or be reached is represented as a vertex of the graph. Reachability of neighboring vertices is
represented by edges connecting the vertices, with an arrow symbol indicating the direction of possible travel (edges
without arrows indicate travel is possible in both directions). For each edge, an associated cost of traveling along the
edge is calculated, yielding a weighted digraph to represent possible fish travel and the associated costs. The least-cost
path leading from each vertex to any of the vertices in the target area (corresponding to river mainstem at a lower
discharge) is then computed and the path length/cost is stored as a value in the output raster at the location of the
starting vertex. Here the target vertices are shown in gold and the least-cost path from point A is shown in blue (where
the cost function applied is Euclidean distance).

37.3 Calculating Disconnected Habitat Area

Even if there is wetted area connecting two locations, they may not be considered connected in the context of fish
passage. This is because low water depths or high velocities may effectively act as “hydraulic barriers”, limiting fish
mobility. The applied Physical Habitat contains threshold values for the minimum swimming depth and maximum
swimming speed. After escape routes are calculated for a given discharge, the resultant path length raster shows which
areas are able to reach the river mainstem for the given hydraulic conditions and biological limitations. Wetted areas
in the corresponding interpolated depth raster for which a least-cost path cannot be calculated are considered to be
disconnected areas. These disconnected areas are then cropped within the wetted area at Qhigh (not interpolated), as
floodplains outside the Qhigh wetted area are assumed to not be active for the simulated flow reduction. Resultant
disconnected areas are saved to a shapefile for each discharge in the disc_areas output directory.

Once disconnected areas have been calculated, they are weighted by the combined habitat suitability index (cHSI)
at Qhigh for the target Physical Habitat. The resultant raster is stored as disconnected_habitat in the output
directory. Since cHSI serves as a proxy for fish density in habitat-limited environments, the cHSI at Qhigh in areas
that become disconnected by the flow reduction serves as a spatially-distributed stranding risk metric.

37.4 Determining Qdisconnect

The Q_disconnect map outputs provide estimates of the discharges at which wetted areas become disconnected
from the mainstem of the river channel. Estimating these discharges is done as follows:

• Assign all pixels wetted at the highest discharge a default value of zero.

• Iterating over discharges in ascending order, pixels within disconnected area polygons are assigned a value of
the corresponding discharge.

118 Chapter 37. Methodology

River Architect, Release latest

• The resultant raster is saved as the Q_disconnect.tif map output.

Note that the default value of zero indicates pixels wetted at the highest discharge but not present within any of the
disconnected area polygons. Other values indicate the highest modeled discharge for which the pixel is disconnected
from the channel mainstem.

37.5 Disconnection Frequencies

For each disconnected area, Q_disconnect can be combined with the hydrologic flow record in order to calculate
the average number of potential stranding events occurring per year. This is generated by computing the total number
of times mean daily flow drops below Q_disconnect during the season of interest for the applied species/lifestage
(Physical Habitat) and dividing by the number of years on record.

A disc_freq output map will be produced provided that flows have already been analyzed (Make flow duration
curves) for the applied Condition and Physical Habitat.

37.6 Estimating Ramping Rates

Ramping rates are estimated by applying the following assumptions:

• the flow reduction scenario is characterized by a linearly downramping hydrograph from Qhigh to Qlow over
the input time period

• Downstream attenuation of the hydrograph is not considered

Ramping rates are estimated via linear approximation, using the difference in depths between model discharges prior
to disconnection.

The ramping rate output raster is stored as ramping_rate_###min.tif, where ### corresponds to the input
time period over which the downramping occurs.

37.5. Disconnection Frequencies 119

River Architect, Release latest

120 Chapter 37. Methodology

CHAPTER

THIRTYEIGHT

REFERENCES

Travel thresholds used to define Physical Habitats in Fish.xlsx can be estimated from the following sources:

Bell, M. C. (1991). Fisheries Handbook of Engineering Requirements and Biological Criteria (3 ed.). Portland,
Oregon.

CDFG. (2012). Standard Operating Procedure for Critical Riffle Analysis for Fish Passage in California DFG-IFP-001,
updated February 2013. California Department of Fish and Game, DFG-IFP-00(September), 1–25.

Katopodis, C., & Gervais, R. (2016). Fish swimming performance database and analyses. DFO Can. Sci. Advis. Sec.
Res. Doc. 2016/002.

U.S. Forest Service FishXing Data Table (various sources)

121

https://www.fs.fed.us/biology/nsaec/fishxing/fplibrary/Bell_1991_Fisheries_handbook_of_engineering_requirements_and.pdf
https://www.fs.fed.us/biology/nsaec/fishxing/fplibrary/Bell_1991_Fisheries_handbook_of_engineering_requirements_and.pdf
https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=150377
https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=150377
https://waves-vagues.dfo-mpo.gc.ca/Library/362248.pdf
https://waves-vagues.dfo-mpo.gc.ca/Library/362248.pdf
http://www.fsl.orst.edu/geowater/FX3/help/SwimData/swimtable.htm

River Architect, Release latest

122 Chapter 38. References

CHAPTER

THIRTYNINE

PROJECT MAKER

• Introduction to the Project Maker module

• Quick GUIde to a project assessment

– Prerequisites

– Main window set-up and run

– Input: Variables and automatically generated files

– Input: Project Area Polygon shapefile

– Input: Delineate Plantings shapefile

• Cost quantity assessment and the cost master workbook

– Terraforming

– Vegetation plantings and supporting features

– Terrain stabilization

– Nature-based engineering features (other)

– Other civil engineering works

– Other costs and remarks

• Mapping of construction elements

• Ecological benefit assessment (Calculate SHArea)

– Additional input and requirements

– Run SHArea calculation

– Output

123

River Architect, Release latest

124 Chapter 39. Project Maker

CHAPTER

FORTY

INTRODUCTION TO THE PROJECT MAKER MODULE

The ProjectMaker module guides through the half-automated assessment of cost-relevant quantities and ecological
project benefits. A “restoration plan” or project proposal for a restoration plan herein designates an isolated restoration
measure that can be delineated with an own ProjectArea.shp shapefile. versions of a restoration plan may refer
to terraforming options or other planning Conditions. A project proposal is prepared for (preliminarily) versions of
a restoration plan including relevant nature-based engineering features (i.e., vegetation plantings, stabilizing features
such as the placement of angular boulders, and anchored streamwood) and it evaluates cost-relevant quantities. A
project cost table uses the cost-relevant quantities for a preliminary cost estimate. The habitat utility in terms of net
gain in Seasonal Habitat Area (SHArea) for target fish species determines the project return in “US$ per [acre or
m2] of newly created SHArea”. This Wiki page is organized as follows:

• ProjectMaker GUI usage

• Generate a project plan and run a cost-quantity assessment

• Map final designs

• Calculate gain in SHArea

125

River Architect, Release latest

126 Chapter 40. Introduction to the Project Maker module

CHAPTER

FORTYONE

QUICK GUIDE TO A PROJECT ASSESSMENT

41.1 Prerequisites

Ensure that the following steps were executed in order to generate the required geodata for creating a
project proposal:

• If terraforming applies:

– The SiteName restoration terraforming plan was verified with 2D hydrodynamic modeling

– The River Architect’s VolumeAssessment module was applied to calculate excavation / fill vol-
umes.

• The LifespanDesign and MaxLifespan modules were executed for plantings and other nature-based
engineering features. Thus, the following directories should exist and contain plantings and other
nature-based engineering feature rasters:

– Plantings:

* RiverArchitect/LifespanDesign/Output/Rasters/
CONDITION_lyr20/

* RiverArchitect/MaxLifespan/Output/Rasters/CONDITION_lyr20/

– Other nature-based engineering features:

* RiverArchitect/LifespanDesign/Output/Rasters/
CONDITION_lyr20/

* RiverArchitect/MaxLifespan/Output/Rasters/CONDITION_lyr20/

• The SHArC module was applied to the pre-project (initial) condition and the “with implementation”
(“as-built”) condition.

127

https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

41.2 Main window set-up and run

The below figures shows the ProjectMaker GUI at startup.

128 Chapter 41. Quick GUIde to a project assessment

River Architect, Release latest

The creation of a cost-benefit assessment requires the step-wise definition of variables and calculation beginning at the
top of the GUI and moving forward to the bottom. The following sections provide details regarding input requirements
and calculations of every step.

41.3 Input: Variables and automatically generated files

The assessment uses the following parameters and formats, which can be entered in the GUI:

• Project version (or vii) is a “v” + 2-digits (ii) version number (string), for example, v10 (other 3-digit strings
are also allowed)

• Project name is a string (e.g., of a particular site) written in CamelCase, for example, RavineConfluence

Click on the VALIDATE VARIABLES button to verify that the variables entered are correct. A suc-
cessful validation creates a copy of the template project structure (RiverArchitect/ProjectMaker/.
templates/Project_vii_TEMPLATE/), which is typically saved as RiverArchitect/ProjectMaker/
ProjectName_vii/. The variable validation opens an info-box, a project assessment workbook (.xlsx), and a
mapping project (.aprx in ArcGIS Pro) that invites to create project-specific files. The required actions include:

• WORKBOOK (ProjectName/ProjectName_assessment_version.xlsx) The workbook contains
a spreadsheet named costs, where unit costs and quantities are evaluated. The from_geodata sheet will contain
quantities such as area (in square meters or acres) of vegetation planting types. The numbers in the from_geodata
tab are generated by a subset of codes that use geodata, which require manual actions as described in the next
steps. After running the cost-quantity assessment, verify that the cells containing automatically calculated costs
in the costs sheet link to the correct cells in the from_geodata sheet.

• MAPPING (ProjectName/ProjectMaps.aprx) The copy of ProjectMaker’s template project structure
contains an ArcGIS Pro project file (ProjectName/ProjectMaps.aprx) with predefined layouts and lay-
ers that may require updates to site-specific geofiles (shapefiles and rasters). Project-specific geofiles (shapefiles
and rasters) need to be created as described in the following sections.

41.4 Input: Project Area Polygon shapefile

To determine cost-relevant quantities for a site-related restoration plan, a manual delineation of the project site is
necessary (e.g., by using the template layouts provided in ProjectName/ProjectMaps.aprx).

1. Create a new polygon-shapefile in ProjectName/Geodata/Shapefiles/ (read more on arcgis.com),
name it ProjectArea, and select the project Coordinate System (Current Map). Click on Run.

2. Remove the newly created layer from layout’s Contents tab, double-click on the existing Project area layer
-> Layer Properties opens up -> go to the Source tab -> click on Set Data Source ... -> Select
the newly created /Shapefiles/ProjectArea.shp file -> click OK.

3. In the layout’s Contents tab, right-click on the ProjectArea layer, then Attribute Table. In the
Attribute Table, click on the top-left Field: Add button. Name the field AreaCode, select a Text in
the Data Type column and 50 in the Length column. Click below the new field to and add another field (Click
here to add a new field label) with the following properties: Field Name = gridcode, Data Type = Short
data type, Number Format = Numeric, Precision = 0, and Scale = 0 field named gridcode. Go to ArcGIS
Pro’s Fields ribbon (top of the window) and click Save. Close the Fields: Project area (. . .) tab (the one where
the fields were previously added).

4. Delineate project area

1. Optional: Import modified terrain to visualize boundaries of terraforming.

41.3. Input: Variables and automatically generated files 129

https://pro.arcgis.com/en/pro-app/help/editing/create-polygon-features.htm

River Architect, Release latest

2. In ArcGIS Pro’s Edit ribbon (top of the window), click on Create (ensure that the ProjectArea layer
is selected in the Contents tab) > A Create Features opens.

3. In the Create Features tab, click (highlight) on ProjectArea, then on Polygon.

4. Draw a polygon around the designated project area (finish with the F2-key).

5. Go to the Attribute Table tab and type Restoration zone in the AreaCode field and 1 in the
gridcode field.

6. Save edits.

41.5 Input: Plantings shapefiles

Project Maker will place plants only where it makes sense and removes existing plants where necessary. An overlay of
the above-created project area polygon over recent satellite image shows, where existing plants intersect with projected
actions and where these plants may need to be cleared (removed). A PlantExisting.shp shapefile with polygons delin-
eating these intersects needs to be created and drawn as follows in the ProjectName/ProjectMaps.aprx-file:

1. In the Catalog tab, open the folder tree ProjectName/Geodata/Shapefiles/ (double click on the folder
to make it appear in the lower box).

2. Create a new polygon-shapefile in ProjectName/Geodata/Shapefiles/ (read more on arcgis.com),
name it PlantExisting, and select the project Coordinate System (Current Map). Click on Run.

3. Remove the newly created layer from layout’s Contents tab, double-click on the existing Existing plants
(all) layer -> Layer Properties opens up -> go to the Source tab -> click on Set Data Source
... -> Select the newly created .../Shapefiles/PlantExisting.shp file -> click OK.

4. In the layout’s Contents tab, right-click on the PlantExisting layer, then Attribute Table. In the
Attribute Table, click on the top-left Field: Add button. Name the field ActionType, select a Text in
the Data Type column and 50 in the Length column. Click below the new field to and add another field (Click
here to add a new field label) with the following properties: Field Name = gridcode, Data Type = Short
data type, Number Format = Numeric, Precision = 0, and Scale = 0 field named gridcode. Go to ArcGIS
Pro’s Fields ribbon (top of the window) and click Save. Close the Fields: Project area (. . .) tab (the one where
the fields were previously added).

5. Delineate existing plantings area:

1. Ensure that a valid background image is linked to the background layer (Properties -> Source
tab).

2. In ArcGIS Pro’s Edit ribbon (top of the window), click on Create (ensure that the PlantExisting
layer is selected in the Contents tab) > A Create Features opens.

3. In the Create Features tab, click (highlight) on PlantExisting, then on Polygon.

4. Draw polygons around existing plantings that are visible in the background (satellite image) project area,
within the zone where the modified DEM rasters indicate terrain modification (finish polygons with the
F2-key).

5. Go to the Attribute Table tab and type Existing (text) in the ActionType field and 1 (short
integer) in the gridcode field.

6. Once all visible plantings within the project area are delineated, save the edits.

Terraforming may require clearing of existing vegetation in the project area. In this case, use the above created
PlantExisting.shp as template to delineate plants to remove (to be cleared):

1. In the Catalog tab, open the folder tree ProjectName/Geodata/Shapefiles/ (double click on the folder
to make it appear in the lower box).

130 Chapter 41. Quick GUIde to a project assessment

https://pro.arcgis.com/en/pro-app/help/editing/create-polygon-features.htm

River Architect, Release latest

2. Make a copy of a new polygon-shapefile in ProjectName/Geodata/Shapefiles/PlantExisting.
shp and name it PlantClearing.shp in the same folder.

3. In the map Contents tab, double-click on the existing Clearing of Shrubs layer -> Layer
Properties opens up -> go to the Source tab -> click on Set Data Source ... -> Select the newly
created .../Shapefiles/PlantClearing.shp file -> click OK.

4. Delineate existing plantings to be removed (clearing):

1. In the layout’s Contents tab, right-click on the PlantClearing layer, then Attribute Table.

2. Highlight all polygons of existing plants that do not need to be removed. Press Delete to remove these
plant polygons from the clearing list. When highliting existing plantings for clearing, remember that
in river restoration and habitat enhancement projects “clearing” should limit to the absolutely required
minimum. That means: Delete as many polygons of existing plants as possble from PlantClearing.
shp.

3. Once all non-clearing plants are removed, save the edits.

5. Project Maker will not place any plant where existing plants are, even though when these are highlighted in the
the PlantClearing shapefile. Therefore, consider to remove the polygons contained in PlantClearing.
shp from PlantExisting.shp.

Save and close ProjectName/ProjectMaps.aprx. Note: Both PlantExisting and PlantClearing
shapefiles are not mandatory for running Project Maker, but recommended.

41.5. Input: Plantings shapefiles 131

River Architect, Release latest

132 Chapter 41. Quick GUIde to a project assessment

CHAPTER

FORTYTWO

COST QUANTITY ASSESSMENT AND THE COST MASTER
WORKBOOK

The ProjectName_assessment_vii.xlsx is subsequently referred to as the cost master workbook. The
workbook is automatically generated as a template-copy and it contains two cost ... tabs. Important: As a
function of the unit system (U.S. Customary or SI metric), only keep the relevant cost worksheet and delete the
other one (see below figure). Rename the retained costs tab to costs.

The prices contained in the cost master workbook are in US$ and may be adapted to fit local construction costs. The
following sections describe steps and requirements for the assessment of cost-relevant quantities with the cost master
workbook.

42.1 Terraforming

The VolumeAssessment module evaluated terrain excavation and fill volumes. VolumeAssessment cre-
ated workbooks featuring terraforming volumes in cubic meters/yards in the directory RiverArchitect/
VolumeAssessment/Output/PSEUDO_CONDITION_volumes.xlsx. Optionally, these workbooks
can be copied to a PSEUDO_CONDITION_volumes.xlsx workbook in the project folder. Re-
call: PSEUDO_CONDITION_volumes.xlsx has to tabs: (1) excavate_YYYYMMDDHHhMM and (2)
fill_YYYYMMDDHHhMM. Copy the terraforming volumes from either of these two spreadsheets to the cost master
workbook’s (ProjectName_assessment_vii) terraforming_volumes spreadsheet (cells are highlighted, only
values). The template’s unit costs of US$ 23.00 per cubic yard (or EUR 23.00 per m3) include short transport dis-
tances (< 1 km) and material storage. It is hypothesized that the smaller value (i.e., either the excavate or the fill
volume) is incorporated in the costs of the higher value because the smaller volume can be reused on-site. The costs
for terraforming are evaluated in cell G8 of the cost() tab of CONDITION_volumes.xlsx, based on the excavate and
fill volumes that need to be copied to the terraforming_volumes tab of CONDITION_volumes.xlsx. The following
formula applies (vol refers to the terraforming_volumes spreadsheet):

costs!G8 = costs!D8 · max(vol!C5, vol!C6)

133

River Architect, Release latest

42.2 Vegetation plantings and supporting features

Before the most reasonable vegetation plantings are implemented into the project plan, the LifespanDesign and
MaxLifespan modules need to be run based on anew 2D simulations made with the terraformed DEM. The result-
ing (maximum) lifespan rasters need to be available in the directories RiverArchitect/LifespanDesign/
Output/Rasters/CONDITION_lyr20/ and RiverArchitect/MaxLifespan/Output/Rasters/
CONDITION_lyr20/.

Define critical lifespans Before plantings can be placed, River Architect wants to know the critical threshold for
lifespans that a plant species needs have to be applicable (2.5 may be a reasonable estimate here). For example, if
the field Do not plant where expected lifespans are less than = 2.5, River Architect will only place plantings with
an expected lifespan of 2.5 years or more. In addition, River Architect requires the definition of a critical lifespan of
vegetation plantings, which require additional nature-based engineering support. For example, if the field Stabilize
plants where expected lifespans are less than = 10.0, River Architect will add supporting nature-based engineering
features where the best performing plant species lifespan is less than 10.0 years. Note that the second value needs to
be higher than the first value to reasonable results.

Place plantings The GUI’s Place best vegetation plantings button launches a python function that picks up these
maximum lifespan rasters, limits there extents to the ProjectDelineation Polygon and evaluates relevant quan-
tities for construction purposes. Read the logfile carefully and ensure that no error or warning messages oc-
curred. If error messages occurred, check the geodata sources and error messages, ensure that the costs master file
(ProjectName_assessment_vii.xlsx) is closed and traceback error messages. Re-run Delineate Plantings
and traceback error messages until no error messages occur anymore. After a successful run, Delineate plantings has
written vegetation plantings areas to the cost master workbook’s from_geodata spreadsheet. The costs spreadsheet
automatically evaluates plantings in the Vegetation plantings frame. Nevertheless, double-check assigned cell links to
the from_geodata spreadsheet and close the cost master workbook. Delineate plantings saves the cropped maximum
lifespan rasters and shapefiles with area summaries in the /Rasters/ and /Shapefiles/ subfolders. If the cell
links in the automatically opened cost master workbook’s costs spreadsheet are correct, save and close the workbook.
Note: Project Maker places best plants in alphabetic order. In the case of the pre-defined plant species, that means,
first a pixel is tested for its suitability for Box Elder, then for Cottonwood, then White Alder, and then Willows. If a
pixel already got assigned a plant species, it will not be tested again for other plant species. For example, if a pixel got
assigned Box Elder, it will not be considered for all other plant species.

Stabilize plantings Even though the vegetation plantings maximum lifespan maps identify the optimum plant species
according to the highest lifespans, the projected vegetation plantings may be associated with low lifespans. There-
fore, supporting (stabilizing) features such as engineered log jams (here: single anchored logs or root wads) may be
required. The GUI’s Stabilize plantings button launches a python function that adds stabilizing nature-based
engineering features such as anchored wood logs to planting areas associated with the user-defined minimum plantings
lifespan. The Stabilize plantings function uses the following priorities of stabilizing features:

1. Large wood logs (diameters defined in RiverArchitect/LifespanDesign/.templates/
threshold_values.xlsx) if their lifespan is higher than the Critical plantings lifespan.

2. Engineered (anchored) wood logs, where maximum lifespan maps indicate convenient applicability.

3. Vegetative nature-based engineering features (pre-defined in cost master workbook: brush layers; alterna-
tively, fascines or geotextile can be linked from costs!F30:F33 to from_geodata!C16*. . . , where the depth to
the water table does not exceed the threshold values defined in RiverArchitect/LifespanDesign/.
templates/threshold_values.xlsx.

4. Mineralic nature-based engineering features (rock paving), where the depth to the water table is insuf-
ficient for vegetative stabilization and where the terrain is steeper than the threshold values defined in
RiverArchitect/LifespanDesign/.templates/threshold_values.xlsx.

5. Angular boulders where high dimensionless bed shear stress predictions prohibit the utilization of any above
feature.

134 Chapter 42. Cost quantity assessment and the cost master workbook

https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/MaxLifespan

River Architect, Release latest

Place best vegetation plantings writes construction-relevant numbers for vegetation planting stabilization to the cost
master workbook’s from_geodata spreadsheet. The costs spreadsheet automatically evaluates stabilizing feature quan-
tities in the nature-based engineering (stabilization) and nature-based engineering (other) frames. Nevertheless, check
the assigned cell links to the from_geodata spreadsheet and adapt feature types if required. Moreover, Stabilize plant-
ings creates a shapefile called (Plant_stab.shp) in ProjectName/Geodata/Shapefiles/. Check the cell links
in the automatically opened cost master workbook’s costs spreadsheet (cell links to the from_geodata spreadsheet).
Finally, save and close the workbook.

42.3 Stabilize terrain

The Terrain Stabilization frame enables the identification of areas that require additional support with
nature-based engineering features to yield a target lifespan that can be defined in the field Critical lifespan. For exam-
ple, if new terraforms are intended to persist at least 20 years, set Critical lifespan=20. A click on the Stabilize
terrain button launches the calculations, where nature-based engineering features are placed in the same hierar-
chical order as before. Besides, the terrain stabilization calculates a stable grain size Raster for the provided Criti-
cal lifespan. The control variables of *,cr (default 0.047) and Manning’s n can be defined by clicking on the Set
stability drivers button. To learn more about the stable grain size computation, please refer to the parameter
calculation and stable grain size Raster creation.

The Terrain Stabilization produces writes relevant surfaces to the from_geodata spreadsheet in costs master
file (ProjectName_assessment_vii.xlsx) and produces the following geofiles:

• Raster with stable grain (boulder) sizes ProjectMaker/ProjectName_vii/Geodata/Rasters/
terrain_boulder_stab.tif

• Shapefile with relevant nature-based engineering features (see above definitions) ProjectMaker/
ProjectName_vii/Geodata/Shapefiles/Terrain_stab.shp

Check the cell links in the automatically opened cost master workbook’s costs spreadsheet (cell links to the
from_geodata spreadsheet). Finally, save and close the workbook.

42.4 Manual placement of nature-based engineering features

Additional habitat can be created with cover features (i.e., engineered logs jams or root wads) at locations that re-
sult from an expert assessment. To implement cover features, open ProjectName/Geodata/ProjectName/
ProjectMaps.aprx to do the following:

1. Create a new polygon-shapefile in ProjectName/Geodata/Shapefiles/ and name it StreamWood.

2. Remove the newly created StreamWood layer from layout’s Table of Contents, double-click on the existing
ELJs (Cover habitat) layer -> Layer Properties opens up -> go to the Source tab -> click on Set
Data Source. . . -> Select the newly created ProjectName/Geodata/Shapefiles/StreamWood.shp
file -> click OK.

3. Start editing the ELJs (Cover habitat) layer.

4. Draw engineered log jams and root wads as 10 ft x 10 ft (3.1 m x 3.1 m) rectangles. Design hints: Engineered
log jams and root wads must not be placed in side channels or anabranched sections of the rivers. However,
these features can add “cover” habitat in backwater zones or reconnected ponds. A save premise is to keep a
distance of at least 100 ft (or approximately 30 m) between individual log jams or root wads. To respect the
distances, draw a circle with a diameter of 2·100 ft (or approximately 2·30 m) and place single engineered log
jams in the middle of the circles.

5. Save the edits and stop editing.

42.3. Stabilize terrain 135

https://en.wikipedia.org/wiki/Manning_formula#Manning_coefficient_of_roughness

River Architect, Release latest

6. Write the number of drawn streamwood elements to the cost master workbook’s
(ProjectName_assessment_vii) costs spreadsheet (nature-based engineering frame).

42.5 Other civil engineering works

Site access, terrain acquisition or culverts may be required and contribute to the project costs. Satellite images and GIS
measurement tools help to identify the required length of new roads or roads that need to be developed. The length
of new roads can be evaluated (e.g., by drawing paths transferring the path length in yd’ [length yard] or m’ [length
meter] to the cost master workbook’s (ProjectName_assessment_vii) costs spreadsheet; cf. Civil engineering
& other frame). For later revision, export the drawn paths to a newly created folder (e.g., ProjectName/Geodata/
Shapefiles/) as polyline shapefile or *.kmz file. The resulting costs need to be manually entered in the costs master
workbook’s (ProjectName_assessment_vii) costs spreadsheet (Civil engineering & other frame).

42.6 Markups, permitting, and other costs

The final project costs include site mobilization and demobilization as well as unexpected costs. Moreover, permitting,
markups (such as overhead, profit, and insurance) and engineering fees are added as percentages of costs for construc-
tion works at the bottom of the cost master workbook’s (ProjectName_assessment_vii) costs spreadsheet.
The total costs for the project proposal are summarized at the top of the costs spreadsheet (cell G2).

Please note:

• There is no warranty for the calculated costs (see disclaimer).

• All workbook-internal cell links must be verified manually, in particular, the cost(UNITS) tab.

136 Chapter 42. Cost quantity assessment and the cost master workbook

CHAPTER

FORTYTHREE

MAPPING OF CONSTRUCTION ELEMENTS

Open ProjectName/ProjectMaps.aprx and go to the Catalog tab (typically on the right). Click on
> Layouts and double-click on ProjectName_assessment_vii. In the layout’s Contents tab (typically
on the left), select Layers Map Frame and double-click on every layer to define the correct dataset source
files (Source tab) that result from the above-described cost assessment. Note: Layer groups do not have a
Source tab. Relevant shapefiles are stored in ProjectName/Geodata/Shapefiles/ and relevant rasters
are stored in ProjectName/Geodata/Rasters/. Export the map (ArcGIS Pros Catalog -> right-click on
Layouts/ProjectName_assessment_vii -> select Export to File...) to the project folder and name
it ProjectName_assessment_[...].pdf (proposition for consistent file naming).

137

River Architect, Release latest

138 Chapter 43. Mapping of construction elements

CHAPTER

FORTYFOUR

ECOLOGICAL BENEFIT ASESSMENT (CALCULATE SHAREA)

The project costs are vetted against the net gain in annually usable habitat area for target fish species. The GUI’s
Calculate Net Seasonal Habitat Area routine calculates usable habitat from rasters that indicate where the composite
Habitat Suitability Index (cHSI) is higher than a selected threshold value.

44.1 Additional input and requirements

Every cHSI raster refers to a steady discharge within a flow duration curve. The expected flow exceedance duration
per discharge bin multiplied with the usable habitat area is summed up to the SHArea. The comparison of the existing
(pre-project) and the “with implementation” (post-project) habitat suitability requires the following:

• Both situations (pre- and post-project) were simulated in the 2D hydrodynamic model.

• Flow duration curves for the project site were established:

– A workbook template for flow duration curves is available in RiverArchitect/SHArC/
FlowDurationCurves/flow_duration_templates.xlsx

– The GetStarted tab contains the Analyze Flow tool for producing the required format for SHArea
calculation in 00_Flows/CONDITION/.

• The River Architect’s SHArC module was executed for both situations (pre- and post-project) to obtain cHSI
rasters.

• Example:

– The pre-project terrain DEM dates from 2008 and terrain modifications were performed based on the 2008
DEM in a reach called rea.

– Both DEMs, original and modified correspond to pre- and post-project conditions, respectively.

– Both DEMs were simulated in the 2D hydrodynamic model with discharges of 100, 200, 500, 1000, 2000,
and 5000 cfs (or m3/s).

– The corresponding modelling results (flow depth and velocity) were stored in the direc-
tories RiverArchitect/01_Conditions/CONDITION/ and RiverArchitect/
01_Conditions/CONDITION_rea_lyr10/, respectively. The string lyr10 refers to terraforming
according to the code naming conventions.

– The River Architect’s SHArC module applied to both situations with a cHSI threshold value of, for exam-
ple, = 0.5. This threshold value means that all pixels with a cHSI value lower than 0.5 were considered as
being non-habitat and the SHArC module excludes these pixels from the cHSI rasters. Thus, the SHArC
module produced cHSI rasters that are stored in:

* RiverArchitect/SHArC/SHArea/Rasters/CONDITION/ (existing / pre-project)

139

https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

* RiverArchitect/SHArC/SHArea/Rasters/CONDITION_rea_lyr10/ (with imple-
mentation / post-project)

– The SHArC module associated (relative) discharge duration and usable habitat areas with the rasters. For
example, if the target fish species was Chinook salmon, juvenile lifestage (naming convention chju),
the SHArC module wrote the usable habitat area and discharge duration to the following workbook:
RiverArchitect/SHArC/SHArea/CONDITION_chju.xlsx

44.2 Run SHArea calculation

When the above requirements are fulfilled, the Project Proposal GUI can assess the difference in usable habitat area
between both situations (pre- and post-project, i.e., the net gain in SHArea). For starting the calculation, define the
above-described input data and confirm the calculation:

• Select a fish species corresponding to the one analyzed with the SHArC module (e.g., Chinook salmon, juvenile).
The Select fish button turns green after selecting a target fish species + lifestage.

• Select an initial condition (pre-project) and confirm the selection (button turns green after selection).

• Select a condition after terraforming (with implementation / post-project) and confirm the selection (button turns
green after selection.

• Click on the Calculate Net gain in SHArea button to start the assessment.

The program will run in the background and prompts the calculation progress in the console window.

After running the program, discharge-specific usable habitat area was written to a spreadsheet located in
ProjectName/Geodata/SHArea_evaluation_UNIT.xlsx (see output section below).

44.3 Output

After a successful run, a copy of the cost master workbook with the file name extension corresponding to the target
fish automatically opens. For example, if the target fish was Chinook salmon - juvenile, the copy of the workbook is
. . ./ProjectName_assessment_vii_chju.xlsx.

Moreover, the particular usable areas associated with the available discharges were written to /Geodata/
SHArea_evaluation_chju.xlsx.

The discharge-related shapefiles with polygons of usable habitat area were saved as: ProjectName/Geodata/
Rasters/CONDITION/no_cover/NUM_SHArea_eval.shp. NUM is an automated prefix added by the
SHArea evaluation routine. The association of the NUM shapefile with the corresponding discharge was logged to
ProjectName/Geodata/logfile_40.log.

The cells G3 and I2/3 in ProjectName_assessment_vii_FILI.xlsx state the net gain in SHArea and the
project return in units of US$ per acre (or m2 per EUR or any other currency defined) net gain in SHArea (comparison
of pre-and post-project condition), respectively.

140 Chapter 44. Ecological benefit asessment (Calculate SHArea)

https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC

CHAPTER

FORTYFIVE

RIVER ARCHITECT TOOLS

Tool scripts can be considered as beta versions of future functionalities that will be implemented in River Architect.
Typically, Tools are basic commandline scripts for creative design support. Currently, routines for the hydraulic design
of pool-riffle sequences or flood analysis are available, where the flood analysis applies to the U.S. Army Corps of
Engineers’ HEC-SPP software. The Tools routines are located in RiverArchitect/Tools/.

141

https://www.hec.usace.army.mil/software/hec-ssp/

River Architect, Release latest

142 Chapter 45. River Architect Tools

CHAPTER

FORTYSIX

MAIN TOOL SCRIPTS

Run the following scripts with Esri’s Python environment (read more)

• make_annualpeak.py prepares required input data for statistic flow analyses and with the U.S. Army Corps
of Engineers’ HEC-SPP software.

• make_flowduration.py creates flow duration curves (annual averages) for the assessment of AUA.

• morphologydesigner.py creates design tables for self-sustaining pool-riffle channels (uses
cHydraulic.py and cPoolRiffle.py).

• rename_files.py facilitates renaming input files for conditions according to raster file name conventions
by adding, removing or replacing a file name prefix and suffix.

• run_make_....bat are a batchfiles that run make_....py on Windows x64.

• run_morphology_designer.bat is a batchfiles that runs morphology_designer.py on Windows
x64.

143

https://www.hec.usace.army.mil/software/hec-ssp/

River Architect, Release latest

144 Chapter 46. Main Tool scripts

CHAPTER

FORTYSEVEN

CLASS AND FUNCTION FILES

The code execution depends on the following folders and scripts:

• .templates folder contains a template workbooks for multiple purposes.

• Products folder contains results of any script in this folder.

• cHydraulic.py contains a class with routines for calculating cross-section-averaged flow characteristics.

• cInputOutput.py contains classes required for reading and writing data, as well as calculation progress
logging.

• cPoolRiffle.py provides routines for designing self-sustaining pool-riffle channels.

• fTools.py is a set of functions used by other Python applications within this folder.

145

River Architect, Release latest

146 Chapter 47. Class and Function files

CHAPTER

FORTYEIGHT

ERROR MESSAGES AND TROUBLESHOOTING

147

River Architect, Release latest

148 Chapter 48. Error messages and Troubleshooting

CHAPTER

FORTYNINE

KNOWN ISSUES

We do our very best to program River Architect as robust and flexible as possible. River Architect’s stepwise develop-
ment nevertheless led to a few restrictions in its freedom of use, which are caused by a couple of hard-code sequences.
The following limitations because of hard-coding are known and will be fixed in future versions:

• SHArC: Physical Habitats / fish lifestages must be named either spawning, fry, ammocoetes,
juvenile, adult, hydrologic year, season, depth > x, or velocity > x. The
lifestage names are currently hard-coded in the Fish class (RiverArchitect/.site_packages/
riverpy/cFish.py) dictionary self.ls_col_add = {"spawning": 1, "fry": 3,
"ammocoetes": 3, "juvenile": 5, "adult": 7, "hydrologic year": 1,
"season": 3, "depth > x": 5, "velocity > x": 7}. This dictionary can be changed for
using other lifestage names and we are working on an improvement in later versions. Note: This dictionary
defines the relative column numbers that is added to the column where a fish name is defined.

• ArcGIS Pro 2.4 Exception Error: (arcpy) - expected 1 arguments, got 2 The lat-
est version of ArcGIS Pro 2.4 may cause problems when RiverArchitect calls the conda environment.
Remedy (1): Use "C:\Program Files\ArcGIS\Pro\bin\Python\envs\arcgispro-py3\
python.exe" instead of "%PROGRAMFILES%\ArcGIS\Pro\bin\Python\Scripts\propy" in the
RiverArchitect/Start_River_Architect.bat (see context in the installation instructions). Rem-
edy (2): In ArcGIS Pro, go to Settings (bottom left), then Python, click on Manage Environments and Clone
Default. Check the clone (arcgispro-py3-clone) and close ArcGIS Pro.

• Maximum data size (River Architect’s Lifespan & Design mapping hangs without prompting any mes-
sage): River Architect’s data processing competence depends on the available Random-Access Memory (RAM).
As a general rule, the maximum amount of data should be smaller than the available RAM. The size of pro-
cessed data can be approximated as:RAM >= Single Raster size · Number of features · Number of parameters
per feature · Number of dischargesThe data size limit applies to lifespan mapping only, where River Architect
loads nearby all available data in the 01_Conditions/CONDITION/ folder for each selected feature to run
arcpy.sa.CellStatistics. To avoid issues, consider the following rules of thumb:

– Limit the project area to reasonable extents (single Raster size <= 350 MB).

– Limit the number of discharges to less than 10 (set relevant discharges defined in rows 4, 11, and 12 of
input files to less than 10); manual modification of automatically generated input files may be required
(rows 4, 11, and 12 of 01_Conditions/CONDITION/input_definitions.inp).

– Analyze only one feature at a time rather than feature groups (such as “Plantings”). In this case, the single
Raster size may be up to 1 GB.

• Grain size raster name coherence: The LifespanDesign module will read grain size raster names from
01_Conditions/CONDITION/input_definitions.inp. However, the Ecohydraulics module
absolutely requires that a grain size raster in SI units is named dmean.tif (units: meters) and a grain size
raster in U.S. customary units must be named dmean_ft.tif (units: feet).

• PDF maps export of lifespan maps fails under some circumstances (read more in the error message).

149

https://pro.arcgis.com/en/pro-app/tool-reference/spatial-analyst/cell-statistics.htm

River Architect, Release latest

150 Chapter 49. Known issues

CHAPTER

FIFTY

HOW TO TRACE ERROR AND WARNING MESSAGES

If River Architect encounters problems, the code writes WARNING and ERROR messages to the Python command
line and to the same logfile where all other computation progress information is logged. The WARNING and ERROR
messages provide information on the error cause and this Wiki contains all possible WARNING and ERROR messages
of River Architect.

Thus, for troubleshooting, press the CTRL + F key, enter (part of) the WARNING or ERROR message that occurred,
and press enter. Causes and Remedies are provided for every WARNING and ERROR message. Do not include specific
parameters, file names, or expressions in parentheses or brackets.

Otherwise, the WARNING and ERROR messages are listed in alphabetic order (starting with Error messages, then
ExceptionalError message, then Warning messages . . .).

151

River Architect, Release latest

152 Chapter 50. How to trace Error and Warning messages

CHAPTER

FIFTYONE

ERROR AND WARNING MESSAGE GENERATION

Most errors occur when the wrong python interpreter is used or when Rasters or layouts have bad formats or when
the information stated in the input files is erroneous. The River Architect writes process errors and descriptions to
logfiles. When the GUI encounters problems, it directly provides causes and remedies in pop-up infoboxes. The
common error and warning messages, which can be particularly raised by the package (alphabetical order) are listed
in the following with detailed descriptions of causes and remedies. Most error messages are written to the logfiles, but
some exception errors are only printed to the terminal because they occur before logging could even be started. Such
non-logged ExceptionErrors are listed at the bottom of the Error messages. Some non-identifiable errors raised
by the arcpy package disappear after rebooting the system.

153

River Architect, Release latest

154 Chapter 51. Error and Warning message generation

CHAPTER

FIFTYTWO

ERROR MESSAGES

• arcpy ERROR 130051: Input feature class is not registered as versioned.

– Cause: arcpy failed to register datasets, which basically means that the dataset does not exist. Moreover,
this arbitrary error may occur if, for example, multiple subsets of a Condition were created without closing
River Architect between each creation.

– Remedy:

* Make sure that the dataset exists (read error message information).

* GetStarted: When creating Conditions, ensure to restart River Architect after every single creation
of a Condition or Condition subset. This issue is related to arcpy, which will not register datasets
unless River Architect is completely closed. We are developing work-arounds.

* ProjectMaker: Ensure that the project polygon and the selected habitat condition (from SHArC) over-
lap (otherwise, the intersecting dataset is empty).

• ERROR 000641: Too few records for analysis.

– Cause: This arcpy error message occurs here when arcpy.
CalculateGeometryAttributes_management tries to compute the area of an empty shapefile.

– Remedy: If this error occurs within the calculation of SHArea (Seasonal Habitat Area) calculations, it may
be ignored because some discharges do not provide any usable habitat area for a target fish species within
a defined project area. Otherwise, traceback files and check the shapefile consistency.

• ERROR 999998: Unexpected Error. This is an operating system error and it can indicate different
error conditions (i.e., the real reasons may have various error sources). Some of the most probable causes are:

– Cause: Usage of the wrong python interpreter

– Remedy:

* Make sure to use the correct Python environment (see installation guide)

* Make sure that all input Rasters are in GeoTIFF format and well placed in the folder
RiverArchitect/01_Conditions/CONDITION/.

* Rebooting the system can help in some cases.

• ERROR: .cache folder in use.

– Cause: The content in the cache folder is blocked by another software and the output is probably affected.

– Remedy: Close the software that blocks .cache, including explorer.exe, other instances of python
or ArcGIS and rerun the code. Also re-logging may be required if the folder cannot be unlocked.

• ERROR: .cache folder will be removed by package controls.

155

https://pro.arcgis.com/en/pro-app/help/data/geodatabases/overview/a-quick-tour-of-registering-and-unregistering-data-as-versioned.htm

River Architect, Release latest

– Cause: arcpy could not clean up the .cache folder and the task is passed to Python’sos package. The
content in the cache folder is blocked by another process and the output is probably affected.

– Remedy: Close the software that blocks .cache, including explorer.exe, other instances of Python
or ArcGIS and rerun the code. Also re-logging may be required if the folder cannot be unlocked.

• ERROR: (arcpy) in *PAR*.

– Cause: Similar toExceptionERROR: (arcpy) The error is raised by the analysis_...,
design_... and other functions when arcpy Raster calculations could not be performed. Missing
Rasters, bad Raster assignments, errors in input geodata files, or bad Raster calculation expressions are
possible reasons. The error can also occur when the SpatialAnalyst license is not available.

– Remedy: See ExceptionERROR: (arcpy) ...

• ERROR: Analysis stopped ([...] failed).

– Cause: Raised by analysis(...) function in LifespanDesign/feature_analysis.py
when it encountered an error.

– Remedy: Trace back the error message in brackets. If a results Raster could not be saved, it means that the
analyzed feature has no application, i.e., the results Raster is empty, and therefore, it cannot be saved.

• ERROR: Area calculation failed.

– Cause: Raised by calculate_sha(self) of SHArC’s CHSI() class in SHArC/cHSI.py when it
could not calculate the usable habitat area (see SHArea Methods).

– Remedy:

* Ensure that the SHArea threshold has a meaningful value between 0.0 and 1.0 (SHArC Intro).

* Ensure that neither the directory SHArC/.cache/ nor the directory SHArC/SHArea/ or their
contents are in use by other program.

* Review the input settings according to the SHArC Quick GUIde.

* Follow up earlier error messages.

• ERROR: Bad assignment of x/y values in the coordinate input file.

– Cause: Raised by the coordinates_read(self) function of the Info() class in ei-
ther LifespanDesign/cRead InpLifespan.py or MaxLifespan/cReadActionInput.
py when mapping.inp has bad assignments of x-y coordinates.

– Remedy: Ensure that the coordinate definitions in mapping.inp (LifespanDesign/.
templates/ or MaxLifespan/.templates/) correspond to the definitions in LifespanDesign Out-
put maps.

• ERROR: Bad call of map centre coordinates. Creating squared-x layouts.

– Cause: Raised by get_map_extent(self, direction) function of the Info() class in ei-
ther LifespanDesign/cReadInpLifespan.py or MaxLifespan/cReadActionInput.py
when mapping.inp has bad assignments of x-y coordinates.

– Remedy:

* LifespanDesign: Ensure that the file mapping.inp exists in the directory LifespanDesign/.
templates/ corresponding to the definitions in LifespanDesign Output maps.

* MaxLifespan: Ensure that the file mapping.inp exists in the directory MaxLifespan/.
templates/ corresponding to the definitions in LifespanDesign Output maps.

* General: Replace mapping.inp with the original file and re-apply modifications strictly following
LifespanDesign Output maps.

156 Chapter 52. Error messages

https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/MaxLifespan

River Architect, Release latest

• ERROR: Bad mapping input file.

– Cause: Raised by eitherget_map_extent(self, direction),coordinates_read(self)
orget_map_scale(self) function of the Info() class in either LifespanDesign/
cReadInpLifespan.py or MaxLifespan/cReadActionInput.py when mapping.inp has
wrong formats or it is missing.

– Remedy: See ERROR: Bad call of map centre coordinates [...].

• ERROR: MU calculation failed.

– Cause: Error raised by the MU class (GetStarted/cMorphUnits.py) when the defined flow depth
and/or velocity Rasters are not usable.

– Remedy:

* Ensure that no other program uses the selected in flow depth and velocity Rasters, and Condition
folder.

* Manually / visually verify the consistency of the provided input Rasters (Float - type).

* See also next error message (Baseflow MU update failed.)

• ERROR: MU update failed.

– Cause: Error raised by the MU class (GetStarted/cMorphUnits.py) when processing the provided
flow depth and/or velocity Rasters lead to non-meaningful results.

– Remedy:

* Ensure that the flow depth and velocity Rasters have consistent units.

* ISSUE: The current code uses U.S. customary units for MU delineation according to Wyrick and
Pasternack (2014). If required, manual changes of the delineation functions can be made in
GetStarted/cMorphUnits.py (calculate_mu_baseflow function approximately from
line 75 onward). We are working on improving the Morphological Unit generator.

• ERROR: Boundary shapefile in arcpy.PolygonToRaster[...].

– Cause: Raised the SHArC module’s make_boundary_ras(self, shapefile) function (cHSI.
py) when it could not convert a provided shapefile defining calculation boundaries to a Raster and load it
as arcpy.Raster(.../SHArC/HSI/CONDITION/bound_ras).

– Remedy: Verify that a the selected boundary shapefile (SHArC computation boundaries) has a valid rect-
angle and an Id field value of 1 for that rectangle.

• ERROR: Boundary shapefile provided but [...].

– Cause: Raised the SHArC module’smake_chsi(self, fish, boundary_shp) function
(cHSI.py) when the “To Raster” conversion of the provided shapefile defining calculation boundaries
failed.

– Remedy: See ERROR: Boundary shapefile in arcpy.PolygonToRaster[...].

• ERROR: Calculation of cell statistics failed.

– Cause: Raised by identify_best_features(self) of MaxLifespan’s ArcpyContainer()
class in MaxLifespan/cActionAssessment.pywhen arcpy.sa.CellStatistics() could
not be executed.

– Remedy:

* The latest feature added to the internal best lifespan Raster may contain inconsistent data. Manually
load the last feature Raster (the logfile tells the feature name) into ArcGIS Pro and trace back the error.
If needed, re-run lifespan/design Raster Maker.

157

https://www.sciencedirect.com/science/article/pii/S0169555X14000099
https://www.sciencedirect.com/science/article/pii/S0169555X14000099
https://github.com/RiverArchitect/RA_wiki/MaxLifespan

River Architect, Release latest

* In the case that the error occurs already with the first feature added, the MaxLifespan’s zero Raster
may be corrupted. The remedy described for the error message ExceptionERROR: Unable
to create ZERO Raster. Manual intervention required* can be used to
manually re-create the zero` Raster.

• ERROR: Calculation of volume from RASTER failed.

– Cause: The volume_computation(self) function of the VolumeAssessment() class in
VolumeAssessment/cVolumeAssessment.py raises this error when the command arcpy.
SurfaceVolume_3d(RASTER, "", "ABOVE", 0.0, 1.0) failed.

– Remedy:

* Ensure that an ArcGIS 3D extension license is available.

* Ensure that the modified DEM Rasters contain valid data and are not used in any other application.

• ERROR: Cannot find FEAT max. lifespan Raster.

– Cause: The automated terrain modification with grading and/or widen features uses max. lifespan
Rasters (maps) to identify relevant areas. If The get_action_Raster(self, feature_name)
function of the ModifyTerrain() class in ModifyTerrain/cModifyTerrain.py cannot find
max. lifespan Rasters in the defined max. lifespan Raster directory (default: MaxLifespan/Output/
Rasters/CONDITION/), it raises this error message.

– Remedy: Ensure that grading and/or widen max. lifespan Rasters exist in the defined input folder (de-
fault MaxLifespan/Output/Rasters/CONDITION/) and that the names of the Rasters contain
the feature shortname (i.e., grade and/or widen).

• ERROR: Cannot find flow depth Raster.

– Cause: Raised by make_chsi(self, fish, boundary_shp) of the SHArC’s CHSI() class in
SHArC/cHSI.py when it could associate a flow depth Raster based on the name of a habitat suitability
index (HSI) Raster name.

– Remedy:

* Ensure that the flow depth Raster names in RiverArchitect/01_Conditions/CONDITION/
strictly comply with the naming conventions described in the Conditions / Input Rasters section.

* Ensure that the HSI Rasters are stored in .../SHArC/HSI/CONDITION/, with the correct Raster
names including information about the discharge (see the SHArC output section).

• ERROR: Cannot load modified DEM.

– Cause: The volume difference calculation and mapping of a (CAD-) modified DEM Rasters
failed because the __init__(self, ...) function of the VolumeAssessment() class in
VolumeAssessment/cVolumeAssessment.py cannot access the Raster.

– Remedy: Ensure that the selected (CAD-) modified DEM Raster exists and that it is not opened in any
other program (close ArcGIS Pro / QGIS).

• ERROR: Cannot load original DEM.

– Cause: The volume difference calculation and mapping of the selected DEM Rasters failed because the
__init__(self, ...) function of the VolumeAssessment() class in VolumeAssessment/
cVolumeAssessment.py cannot access the Raster.

– Remedy: Ensure that the selected DEM Raster exists and that it is not opened in any other program (close
ArcGIS Pro / QGIS).

• ERROR: Cannot open project: DIR/module_name.aprx.

158 Chapter 52. Error messages

https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

– Cause: Mapping of module_name raises this error message when the stated project file (.aprx) cannot
be opened.

– Remedy: Ensure that the stated is not opened in any other program (ArcGIS Pro Desktop) and that the
stated project file exists.

• ERROR: Could not access Fish.xlsx (...).

– Cause: The get_hsi_curve(self, species, lifestage, par) function of the Fish()
class (.site_packages/riverpy/cFish.py) or the main() function in s40_compare_wua.
py raise this error message when it cannot access Fish.xlsx or copy read values from the /SHArC/
SHArea/condition` directory.

– Remedy: Ensure that neither .site_packages/templates/Fish.xlsx nor any file in /SHArC/
SHArea/condition*` is used by another program.

• ERROR: Could not add cover HSI.

– Cause: The make_chsi(self, fish) function of the CHSI() class (HabitatEvluation/
cHSI.py) raises this error message when it failed to add cover HSI Rasters.

– Remedy: Manually verify cover HSI Rasters in SHArC/HSI/ and recompile cover HSI Rasters if needed
(see CoverHSI).

• ERROR: Could not append PDF page XX to map assembly.

– Cause: The make_pdf_maps(self, ...) function of the Mapper() class (.site_packages/
riverpy/cMapper.py) raises this error when it failed to map the current page (extent).

– Remedy:

* LifespanDesign / Max Lifespan: Ensure that the definitions in LifespanDesign/.templates/
mapping.inp are correct.

* VolumeAssessment: Verify the definitions in the reach coordinates workbook and also refer to error
message ERROR: Could not create new project.

* General: Ensure that no other program accesses the LifespanDesign/.cache/,
MaxLifespan/.cache/, MaxLifespan/Output/, VolumeAssessment/Output/,
or 02_Maps/* directories or their contents (close ArcGIS Pro).

• ERROR: Could not calculate CellStatistics (Raster comparison).

– Cause: Raised by compare_raster_set(self, ...) function of the arcpyAnalysis() class
in LifespanDesign/cLifespanDesignAnalysis.py when the provided it failed to combine
the lifespan according to the provided input Rasters (hydraulic or scour fill or morphological units).

– Remedy: Manually open the input Rasters and ensure that they comply with the requirements stated in the
Conditions / Input Rasters section.

• ERROR: Could not calculate stable grain size Raster for

– Cause: Error raised by the ProjectMaker/s30_terrain_stabilization/’s main() function
when it cannot calculate the stable grain size for a user-defined minimum (critical) lifespan and Condition.

– Remedy: Open RiverArchitect/logfile.log and verify that the stated source data exist and are
not empty (if necessary, open geofiles in ArcGIS Pro and verify contents).

• ERROR: Could not create new project (...)

– Cause: A module cannot find a project for mapping when it tries to open aprx_origin
= arcpy.mp.ArcGISProject(self.ref_lyt_dir + "module_name.aprx") or when it
tries to save a copy of the source project (aprx_origin.saveACopy(self.output_mxd_dir +
"module_name.aprx")).

159

River Architect, Release latest

– Remedy: Ensure that the source project aprx_origin exists (quoted in ERROR-message brackets) and
that the target directory (to:) can be accessed (writing rights / close ArcGIS Pro). If the source project is
missing, re-download it from the source code.

• ERROR: Could not create Raster of the project area.

– Cause: Raised by set_project_area(self) of ProjectMakers’s SHArC() class
in ProjectMaker/cSHArC.py or the main() function in ProjectMaker/
s20_plantings_delineation.py) when it failed to convert the project area shapefile to a
Raster, which it needs for limiting spatial calculations to the project extent.

– Remedy:

* Ensure that the project was correctly delineated (Project Area Polygon preparation).

* If the Error message occurred within the terrain stabilization process, either restart the Project creation
while properly implementing the Project Area Polygon preparation OR manually create a project area
Raster (save as ProjectMaker/ProjectName_vXX/Geodata/Rasters/ProjectArea.
tif, where in-values=Int(1) and out-values=NoData).

• ERROR: Could not create sub-condition folder:

– Cause: Raised by make_sub_condition(...) (GetStarted/fSubCondition) when the de-
fined sub-Condition name is invalid.

– Remedy: Ensure that the target sub-Condition folder is not in use by any other program and that there are
no invalid characters for folder names (such as $ or ?!).

• ERROR: Could not crop RASTER.

– Cause: The make_sub_condition(...) (GetStarted/fSubCondition.py) function
raises this error message when it failed cropping the Raster with the spatial analyst operation
Con(~IsNull(boundary_ras), Float(source_Raster)).

– Remedy: Verify the consistency of the Rasters in the source condition and make sure that no other program
is using data from the source condition or the new sub-Condition folder.

• ERROR: Could not crop Raster to defined flow depth.

– Cause: The crop_input_Raster(self, fish_species, fish_lifestage,
depth_Raster_path) function of the CovHSI(HHSI) class (HabitatEvluation/cHSI.
py) raises this error message when it failed cropping the Raster with the spatial analyst operation
Con((Float(h_Raster) >= h_min), cover_type_Raster).

– Remedy: Ensure that the provided flow depth file (selected in the GUI) contains valid data and that Fish.
xlsx contains a minimum flow depth value for the selected fish species and lifestage.

• ERROR: Could not export PDF page no. XX

– Cause: The make_pdf_maps(self, ...) function of the Mapper() class (.site_packages/
riverpy/cMapper.py) raises this error when LifespanDesign/.templates/mapping.inp
or MaxLifespan/.templates/mapping.inp contain invalid xy-coordinates (format).

– Remedy: Ensure the definitions in LifespanDesign/.templates/mapping.inp and
MaxLifespan/.templates/mapping.inp are correct.

• ERROR: Could not find / access input Rasters.

– Cause: Error raised by the D2W class (GetStarted/cDepth2Groundwater.py) or the DET class
(GetStarted/cDetrendedDEM.py) or the MU class (GetStarted/cMorphUnits.py) when
the defined DEM, flow depth, or velocity GeoTIFFs are not usable.

– Remedy:

160 Chapter 52. Error messages

https://github.com/riverarchitect/program/archive/master.zip

River Architect, Release latest

* Ensure that no other program uses the selected in DEM/flow depth Raster and Condition folder.

* Manually / visually verify the consistency of the provided input Rasters.

* Avoid running d2w.tif, mu.tif and det.tif creation simultaneously and for multiple condi-
tions (the .cache folders are locked by individual instantiations).

• ERROR: Could not find max. lifespan Rasters.

– Cause: Error raised by the main() function in ProjectMaker/s20_plantings_delineation.
py) when the defined directory of max. lifespan Rasters contains invalid or corrupted Raster data.

– Remedy:

* Ensure the correct usage of variables and input definitions (ProjectMaker Quick GUIde).

* Ensure that max. lifespan Rasters were generated without errors; if necessary, visually con-
trol the consistency of max. lifespan Rasters in .../MaxLifespan/Output/Rasters/
CONDITION_reach_lyr20_plants/ and .../MaxLifespan/Products/Rasters/
CONDITION_reach_lyr20_plants/ or . . .nature-based engineering (cf. Project
Maker vegetation plantings and supporting nature-based engineering features).

• ERROR: Could not find any worksheet.

– Cause: Error raised by the open_wb(self) function of the Read() class in RiverArchitect/
.site_packages/riverpy/cInputOutput.py or the MakeFlowTable class
(RiverArchitect/.site_packages/riverpy/cMakeTable.py) when the concerned
workbook contains errors.

– Remedy:

* Ensure the correct usage of .site_packages/templates/Fish.xlsx (SHArC Fish section).

* Ensure the correct adaptation of ProjectMaker/.../Project_assessment_vii.xlsx
(ProjectMaker’s Cost quantity workbook).

* Open SHArC/SHArea/CONDITION_sharea_FILI.xlsx, verify the data contents and make
sure that the file is not opened in any other program.

• ERROR: Could not find hydraulic Rasters for CONDITION.

– Cause: Error raised by the ProjectMaker/s30_terrain_stabilization/’s main() function
when it cannot find hydraulic Rasters for the selected lifespan-design condition.

– Remedy: Ensure that the hydraulic Rasters used for generating Lifespan and Design Rasters are available
in RiverArchitect/01_Conditions/CONDITION/ (also: close all other programs that potentially use
these Rasters).

• ERROR: Could not find Lifespan Raster (...).

– Cause: Error raised by the ProjectMaker/s30_terrain_stabilization/’s main() function
when it cannot find lifespan Rasters.

– Remedy: Go to the LifespanDesign tab for the selected Condition. Create lifespan maps for the
Grains / Boulders feature (creates lf_grains.tif). Terrain stabilization absolutely requires
Grains / Boulders (lf_grains.tif), and optionally requires Streamwood (lf_wood.tif)
and Nature-based engineering features (other) (lf_bio.tif).

• ERROR: Could not find sheet "extents" in computation_extents.xlsx.

– Cause: Error raised by the get_reach_coordinates(self, internal_reach_id) func-
tion of the Read() class in RiverArchitect/.site_packages/riverpy/cReachManager.
py) when the extents sheet in the reach coordinate workbook (ModifyTerrain/.templates/
computation_extents.xlsx) could not be read.

161

River Architect, Release latest

– Remedy: Ensure the correct setup of ModifyTerrain/.templates/computation_extents.
xlsx (reach preparation within the ModifyTerrain module).

• ERROR: Could not find the cover input geofile [...]

– Cause: Error raised by the __init__(self, ...) function of the CovHSI(HHSI) class in SHArC/
cHSI.py) when the input cover geofile could not be read or is missing.

– Remedy: Ensure that a geofile (Raster or shapefile) exists in the specified CONDITION folder for the spec-
ified cover type (checkbox activated in the GUI). The Help button in the GUI provides more information
on required geofiles and the SHArC Working Principles.

• ERROR: Could not interpolate exceedance probability of Q = [...]

– Cause: Raised by interpolate_flow_exceedance(self, Q_value) of the
FlowAssessment() class in .site_packages/riverpy/cFlows.py when the flow du-
ration curve contains invalid data.

– Remedy: Ensure the correct setup of the used flow duration curve in 00_Flows/CONDITION/
flow_durationxlsx. The file structure must correspond to that of the provided template
flow_duration_template.xlsx and all discharge values need to be positive floats. Review the
HHSI input preparation for details.

• ERROR: Could not load

– Cause: Raised by several functions, when they cannot find a user-defined or built-in template file.

– Remedy: Ensure that the stated file exists, can be opened (is not corrupted) and no other program uses the
stated file.

• ERROR: Could not load boundary Raster:

– Cause: Raised by make_sub_condition(...) (GetStarted/fSubCondition) when the de-
fined boundary Raster contains invalid data.

– Remedy: Ensure that the spatial boundary was correctly delineated (similar as described in Project Area
Polygon preparation) and converted to an Integer Raster: On-values have to be Integer 1 and Off-values
have to be Integer 0. The sub-Condition creation only considers Pixels with On-values (Integer 1).

• ERROR: Could not load existing Raster of the project area.

– Cause: Raised by set_project_area(self) of ProjectMakers’s SHArC() class in
ProjectMaker/cSHArC.py when it found a Raster that delineates the project area, but this
Raster is corrupted. The function requires the shapefile to Raster conversion to limit applicable Rasters to
the project extent range, which is done with Raster calculator operations.

– Remedy:

* Ensure that the project was correctly delineated (Project Area Polygon preparation).

* Manually inspect the project delineation Raster.

• ERROR: Could not load newly created Raster of the project area.

– Cause: Raised by set_project_area(self) of the ProjectMaker’s SHArC() class in
ProjectMaker/cSHArC.py when the converted the project area shapefile is corrupted.

– Remedy: Ensure that the project was correctly delineated (Project Area Polygon preparation).

• ERROR: Could not open workbook (...).

– Cause: Error raised by the __init__(self) function of the Read() class in riverpy/
cInputOutput.py or the write_flow_duration2xlsx(self, ...) function of the
SeasonalFlowProcessor() class (riverpy/cFlows.py) when the concerned workbook con-
tains errors or cannot be opened for other reasons.

162 Chapter 52. Error messages

River Architect, Release latest

– Remedy:

* ProjectMaker: Ensure the correct usage of the concerned workbook (ProjectMaker Wiki).

* Flow generator: Ensure that the template workbook in the parentheses is not opened in any other
program and that the template workbook was not modified.

• ERROR: Could not perform spatial radius operations [...].

– Cause: The spatial_join_analysis(self, rater, curve_data) function of the
CovHSI(HHSI) class (SHArC/cHSI.py) raises this error message when one or several
spatial calculations failed, including arcpy.RasterToPoint_conversion[...], arcpy.
SpatialJoin_analysis[...] and / or arcpy.PointToRaster_conversion[...].

– Remedy: Ensure that the cover input files and habitat suitability (curve) parameters are properly defined
according to CoverHSI.

• ERROR: Could not process flow series.

– Cause: Error raised by the build_flow_duration_data(self.)
(SeasonalFlowProcessor() in RiverArchitect/.site_packages/riverpy/
cFlows.py) when it could not read the provided flow series data file.

– Remedy: Ensure that the format of the provided flow series workbook corresponds to the provided example
data file (00_Flows/InputFlowSeries/flow_series_example_data.xlsx).

• ERROR: Could not process information from [...].

– Cause: The main() function in ProjectMaker/s40_compare_wua.py raises this error message
when it could not calculate the annually usable habitat area for a condition or (set of) discharge(s).

– Remedy: Ensure that the variable (parameters) are properly defined according to ProjectMaker Quick
GUIde and that the SHArC module contains the required information.

• ERROR: Could not read flow duration curve data.

– Cause: Raised by get_flow_data(self, ...) of the FlowAssessment() class in .
site_packages/riverpy/cFlows.py when the flow duration curve contains invalid data.

– Remedy:

* Used within SHArC: Ensure that a flow duration curve for all selected Physical Habitats and the select
hydraulic Condition was generated. The flow duration curves are typically saved as 00_Flows/
CONDITION/flow_duration_FILI.xlsx, where FILI is a placeholder of the first two letters
of the selected species and lifestage (Physical Habitat), respectively. For example for Chinook Salmon
- Juvenile, FILI becomes chju, or for All Aquatic - hydrologic year, FILI becomes alhy.

* Ensure that the provided discharge series contains valid data formats as indicated in the example
workbook (00_Flows/InputFlowSeries/flow_series_example_data.xlsx).

• ERROR: Could not read parameter type [...] from Fish.xlsx.

– Cause: The get_hsi_curve(self, species, lifestage, par) function of the Fish()
class (.site_packages/riverpy/cFish.py) and the SeasonalFlowProcessor class
(riverpy/cFlows.py) raise this error message when it cannot read a habitat suitability curve from
Fish.xlsx.

– Remedy:

* Ensure that .site_packages/templates/Fish.xlsx is not opened in any other program.

* Ensure that a habitat suitability curve is defined in Fish.xlsx for the considered hydraulic or cover
parameter according to SHArC Fish section.

163

https://github.com/RiverArchitect/RA_wiki/ProjectMaker
https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

* Ensure that the lifestages defined in .site_packages/templates/Fish.xlsx are part
of the following dictionary: self.ls_col_add = {"spawning": 1, "fry": 3,
"ammocoetes": 3, "juvenile": 5, "adult": 7, "hydrologic year":
1, "season": 3, "depth > x": 5, "velocity > x": 7, "rearing":
7}. All lifestages must be defined in self.ls_col_add, as relative column number to the
0-column of every Fish species. For example, for adding a "rearing" lifestage for Chinook
salmon (one of the default species), "rearing" must replace "adult", which is in the relative
7th (8-1 for the 0-column) of the Chinook salmon species. If lifestages were otherwise modified,
either consider using one of the lifestages defined in the dictionary or modify the dictionary
(self.ls_col_add) in the Fish class (.site_packages/riverpy/cFish.py).

• ERROR: Could not read source file.

– Cause: The Read class (RiverArchitect/.site_packages/riverpy/cInputOutput.py)
or make_sub_condition (GetStarted/fSubCondition) raise this error when the data from the
provided workbook or Raster, respectively, cannot be processed.

– Remedy:

* riverpy: Ensure that the provided workbook respects the input requirements described in the in-
structions of the applied module.

* GetStarted/fSubCondition: Verify the consistency of the Rasters in the source condition and
make sure that no other program is using data from the source condition.

• ERROR: Could not read source project (...)

– Cause: A module cannot find a project for mapping when it tries to open aprx_origin = arcpy.
mp.ArcGISProject(self.ref_lyt_dir + "module_name.aprx").

– Remedy: Ensure that the source project aprx_origin exists (quoted in ERROR-message brackets) and
not opened in any other application (e.g., close ArcGIS Pro). If the source (origin) project is missing,
re-download it from the source code.

• ERROR: Could not retrieve reach coordinates.

– Cause: The automated terrain modification with grading and/or widen features in the
modification_manager(self, feat_id) function of the ModifyTerrain() class
(ModifyTerrain/cModifyTerrain.py) or the make_volume_diff_rasters(self)
function of the VolumeAssessment() class (VolumeAssessment/cVolumeAssessment.
py) raise this error when the reach extents defined in ModifyTerrain/.templates/
computation_extents.xlsx are not readable. In particular, the command self.
reader.get_reach_coordinates(self.reaches.dict_id_int_id[self.
current_reach_id]) caused the error.

– Remedy:

* Follow the instructions in reach preparation within the ModifyTerrain module for correct reach defi-
nitions.

* If the ModifyTerrain module is externally loaded, ensure the correct definition of features and feature
shortnames (see the alternative run options for the ModifyTerrain module).

• ERROR: Could not run SHArea analysis.

– Cause: The main() function in ProjectMaker/s40_compare_wua.py raises this error message
when it could not calculate SHArea.

– Remedy: Traceback warning and other error messages. Ensure the correct definition of parameters, cre-
ation of required geodata, and file naming (ProjectMaker Wiki))

• ERROR: Could not save best lifespan Raster.

164 Chapter 52. Error messages

https://github.com/riverarchitect/program/archive/master.zip
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain
https://github.com/RiverArchitect/RA_wiki/ProjectMaker

River Architect, Release latest

– Cause: Raised by identify_best_features(self) of MaxLifespan’s ArcpyContainer()
class in MaxLifespan/cActionAssessment.py when the calculated internal best lifespan Raster
is corrupted.

– Remedy:

* Check prior WARNING and ERROR messages.

* Ensure that neither the directory MaxLifespan/.cache/ nor the directory MaxLifespan/
Output/ or their contents are in use by other programs.

• ERROR: Could not save CSI Raster associated with ...

– Cause: Raised by make_chsi_hydraulic(self, fish) of SHArC’s CHSI() class in SHArC/
cHSI.py when the calculated cHSI Raster is empty or corrupted.

– Remedy:

* Ensure that neither the directory SHArC/.cache/ nor the directory SHArC/SHArea/ or their
contents are used by another program.

* Review the input settings according to SHArC Quick GUIde.

• ERROR: Could not save cover / H HSI [...] Raster ...

– Cause: Raised by make_hhsi(self, fish_applied) of SHArC’s HHSI() class in SHArC/
cHSI.py when the calculated HHSI Raster is empty or corrupted.

– Remedy:

* Ensure that no other software uses data from neither the SHArC/ nor the RiverArchitect/
01_Conditions/ directories.

* Review the input flow velocity and depth Rasters according to the Conditions / Input Rasters section.

• ERROR: Could not save RASTER .

– Cause: Raised by save_tif(self, ...) of [GetStarted][11]’s ConditionCreator()
class in GetStarted/cConditionCreator.py or make_sub_condition (GetStarted/
fSubCondition.py) when a Raster file could not be saved to a New or Sub Condition, respectively.

– Remedy:

* Ensure that no other program uses the new RiverArchitect/01_Conditions/ directory.

* Visually verify the consistency of provided input Rasters.

• ERROR: Could not save WORKBOOK.

– Cause: The main() function in ProjectMaker/s40_compare_wua.py or the
write_flow_duration2xlsx(self, ...) function of the SeasonalFlowProcessor()
class (riverpy/cFlows.py) raise this error message when they could not save the WORKBOOK.

– Remedy: Ensure that the target workbook can be overwritten, has valid contents, and is not opened by
another program. Traceback earlier warning and error messages.

• ERROR: Could not save SHArea-CHSI Raster.

– Cause: Raised by calculate_sha(self) of SHArC’s CHSI() class in SHArC/cHSI.pywhen the
calculated cHSI Raster is empty or corrupted.

– Remedy:

* Ensure that the SHArea threshold has a meaningful value between 0.0 and 1.0 (SHArC Intro).

* Ensure that neither the directory SHArC/.cache/ nor the directory SHArC/SHArea/ or their
contents are in use by other programs.

165

https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

* Review the input settings according to SHArC Quick GUIde.

• ERROR: Could not set arcpy environment (permissions and licenses?).

– Cause: A script using arcpy and/or arcpy.sa could not set up the work environment.

– Remedy: Either the wrong Python interpreter was used or arcpy and/or a Spatial Analyst extension are
not available. Read more on setting up the Python environment.

• ERROR: Could not transfer net SHArea gain.

– Cause: The main() function in ProjectMaker/s40_compare_wua.py raises this error mes-
sage when it could not copy the calculated SHArea from SHArea_evaluation_unit.xlsx to
REACH_stn_costs_vii.xlsx.

– Remedy: Open SHArea_evaluation_template_unit.xlsx and verify the calculated values.
Traceback potential error sources in the CHSI Rasters /SHArC/ folder and other error messages.

• ERROR: Could not transfer SHArea data for [FISH].

– Cause: The main() function in ProjectMaker/s40_compare_wua.py raises this er-
ror message when it could not retrieve SHArea data from the /SHArC/SHArea/ module to
SHArea_evaluation_UNIT.xlsx.

– Remedy: Open SHArea_evaluation_TEMPLATE_UNIT.xlsx and verify the calculated values.
Traceback potential error sources in the CHSI Rasters /SHArC/ folder and other error messages.

• ERROR: Could not write flow data set.

– Cause: Error raised by the write_flow_duration2xlsx(self, ...) function of the
SeasonalFlowProcessor() class (riverpy/cFlows.py) when it could not write flow duration
data set to RiverArchitect/00_Flows/CONDITION/flow_duration_FILI.xlsx.

– Remedy: Close all applications that may use 00_Flows/CONDITION/flow_duration_FILI.
xlsx and traceback earlier warning and error messages.

• ERROR: Could not write flow duration curve data (...).

– Cause: Error raised by the make_flow_duration(self, ...) or
make_condition_flow_duration(self, ...) functions (SeasonalFlowProcessor()
in RiverArchitect/.site_packages/riverpy/cFlows.py) when it could not write flow
duration curve data to RiverArchitect/00_Flows/CONDITION/flow_duration_FILI.
xlsx.

– Remedy: Close all applications that may use 00_Flows/CONDITION/flow_duration_FILI.
xlsx.

• ERROR: Could not write value to CELL [...]

– Cause: Error raised by the save_close_wb(self, ...) (Write() in RiverArchitect/
.site_packages/riverpy/cInputOutput.py) or write_data_cell(self, column,
row, value) (MakeTable in .site_packages/riverpy/cMakeTable.py) when it cannot
write a value to RiverArchitect/SHArC/SHArea/condition_FILI.xlsx`.

– Remedy: Close all applications that may use RiverArchitect/SHArC/SHArea/
CONDITION_FILI.xlsx. Detailed information on SHArC workbook outputs are available in
the HHSI input preparation section.

• ERROR: Could not write SHArea data for [FISH].

– Cause: The main() function in ProjectMaker/s40_compare_wua.py raises this error
message when it could not write the calculated SHArea to when it cannot write a value to
SHArea_evaluation_template_unit.xlsx.

166 Chapter 52. Error messages

https://github.com/RiverArchitect/RA_wiki/Installation#started
https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

– Remedy: Ensure that the workbook is not opened by another program and/or visually verify that the
concerned `CHSI* Rasters contain valid values.

• ERROR: Cover Raster calculation (check input data).

– Cause: Raised by call_analysis(self, curve_data) of SHArC’sCovHSI(HHSI) class in
SHArC/cHSI.py when the cover HSI Raster calculation failed.

– Remedy: Ensure that the input geofiles (Raster or shapefile) are correctly set up according to CoverHSI.

• ERROR: Extent is not FLOAT. Substituting to extent = 7000.00.

– Cause: Raised by the save_design(self, name) orsave_lifespan(self, name) func-
tions of the ArcPyAnalysis class in LifespanDesign/cLifespanDesignAnalysis.py
when the output folder for Rasters (the folder directory is stated in the logfile) contains Rasters of the
same name which cannot be deleted.

– Remedy: Ensure that no other program uses the Raster output folder and consider moving existing files in
that folder to LifespanDesign/Products/Rasters/CONDITION.

• ERROR: Existing files are locked. Consider deleting [...] file structure.

– Cause: Raised by the get_map_extent(self, direction) function of the Info() class in ei-
ther LifespanDesign/cReadInpLifespan.py or MaxLifespan/cReadActionInput.py
when mapping.inp has bad assignments of x-y coordinates (not a number).

– Remedy: See `ERROR: Bad call of map centre coordinates . . . *

• ERROR: Failed checking *PAR* of *FEATURE*.

– Cause: Special case of ERROR: Function analysis, which may occur after code modifications.

– Remedy:

* Make sure that the self.parameter_lists of features (Code Extension / Extend Features
within the LifespanDesign module) has valid entries that also occur in analysis_call(*args)
(LifespanDesign/feature_analysis.py).

* Make sure that valid function names exist in LifespanDesign/
cLifespanDesignAnalysis.py (Add analysis within the LifespanDesign module).

• ERROR: Failed to access [...].

– Cause: Error raised by the open_wb(self, ...) function of the Read() (or the inheriting
Write())class in RiverArchitect/.site_packages/riverpy/cInputOutput.py or the
MakeFlowTable class in RiverArchitect/.site_packages/riverpy/cMakeTable.py)
when a workbook could not be opened.

– Remedy:

* Ensure that the listed workbook is not opened in any other program and that the workbook is correctly
installed according to the module descriptions.

* Used within SHArC:

· Ensure that a flow duration curve for all selected Physical Habitats and the select hydraulic Condi-
tion was generated. The flow duration curves are typically saved as 00_Flows/CONDITION/
flow_duration_FILI.xlsx, where FILI is a placeholder of the first two letters of the
selected species and lifestage (Physical Habitat), respectively. For example for Chinook Salmon
- Juvenile, FILI becomes chju, or for All Aquatic - hydrologic year, FILI becomes alhy.

· If the module is executed repeatedly for the same condition and fish species-lifestage, and
the workbook (SHArC/SHArea/CONDITION_sharea_FILI.xlsx) has been manually
deleted, restore it by clicking on the Make HSI Raster (...) dropdown menu > Select

167

https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

“Hydraulic” or “Cover” options to open the popup window > Select a Condition > Wait until the
green button View discharge dependency workbook becomes active > RETURN to
MAIN WINDOW and repeat habitat raster, raster combination and/or SHArea analysis.

· Open SHArC/SHArea/CONDITION_sharea_FILI.xlsx, verify the data contents and
make sure that the file is not opened in any other program.

• ERROR: Failed to access computation_extents.xlsx.

– Cause: Error raised by the get_reach_coordinates(self, internal_reach_id)
function of the Read() class in RiverArchitect/.site_packages/riverpy/
cReachManager.py) when the reach coordinate spreadsheet (ModifyTerrain/.templates/
computation_extents.xlsx) could not be read.

– Remedy: Ensure the correct setup of ModifyTerrain/.templates/computation_extents.
xlsx (reach preparation within the ModifyTerrain module).

• ERROR: Failed to access / Failed to load [...]

– Cause: (1) Error raised by the open_wb(self) and make_condition_xlsx(self, fish_sn)
functions of the MakeTable() class in .site_packages/riverpy/cMakeTable.py) when the
template workbook contains errors. (2) Error raised by the GetStarted module’s ConditionCreator
(cConditionCreator.py).

– Remedy:

* Ensure the correct usage of .site_packages/templates/Fish.xlsx (SHArC Fish section)
and the completeness of SHArC/.templates/Q_sharea_template_si.xlsx and SHArC/
.templates/Q_sharea_template_us.xlsx. If either template workbook is corrupted or
does not exist, re-install missing files.

* GetStarted: Ensure that the provided Raster exists.

• ERROR: Failed to access WORKBOOK.

– Cause: Error raised by the write_volumes(self, ...) function of the Writer() class in
RiverArchitect/.site_packages/riverpy/cReachManager.py) or the __init__(.
.) function of the Read() class in RiverArchitect/.site_packages/riverpy/
cInputOutput.py when The WORKBOOK is inaccessible or locked by another program.

– Remedy: Ensure that the concerned workbook exists and no other program uses the workbook.

• ERROR: Failed to add Raster.

– Cause: Raised by read_hyd_Rasters(self) of SHArC’s HHSI() class in SHArC/cHSI.py
when is could not find hydraulic input Rasters.

– Remedy:

* Ensure that no other software uses data from neither the SHArC/ nor the RiverArchitect/
01_Conditions/ directories.

* Review the input flow velocity and depth Rasters according to the Conditions / Input Rasters section.

• ERROR: Failed to create WORKBOOK.

– Cause: Error raised by the write_volumes(self, ...) function of the Writer() class
in .site_packages/riverpy/cReachManager.py) when the template it could not add
new sheets in VolumeAssessment/Output/CONDITION_volumes.xlsx or write to copies of
VolumeAssessment/templates/volume_template.xlsx.

– Remedy: Traceback earlier error messages, ensure that no other program locked VolumeAssessment/
Output/CONDITION_volumes.xlsx and ensure that VolumeAssessment/templates/
volume_template.xlsx was not deleted.

168 Chapter 52. Error messages

https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

• ERROR: Failed to open Fish.xlsx. Ensure that the workbook is not open.

– Cause: Raised by the edit_xlsx(self) function of the Fish() class in .site_packages/
riverpy/cFish.py when .site_packages/templates/Fish.xlsx is opened by another
program or non-existent.

– Remedy: Ensure that the file .site_packages/templates/Fish.xlsx exists and close any soft-
ware that may use the workbook.

• ERROR: Failed to load [...].

– Cause: Raised by the make_condition_xlsx(self, ...) function of the MakeTable() class
in .site_packages/riverpy/cMakeTable.py when it could not copy a template workbook for
creating fish-lifestage-specific flow tables (copy of empty.xlsx).

– Remedy: Ensure that all template files in SHArC/.templates/ exist as provided with the
installation files (in particular: empty.xlsx, CONDITION_sharea_template_si.xlsx,
CONDITION_sharea_template_us.xlsx, and flow_duration_template.xlsx).

• ERROR: Failed to read coordinates from computation_extents.xlsx (return
0).

– Cause: Error raised by the get_reach_coordinates(self, internal_rach_id) function
of the Read() class in .site_packages/riverpy/cReachManager.py) when the reach co-
ordinate spreadsheet (ModifyTerrain/.templates/computation_extents.xlsx) contains
invalid data.

– Remedy: Ensure correct setup of ModifyTerrain/.templates/computation_extents.
xlsx (reach preparation within the ModifyTerrain module).

• ERROR: Failed to read maximum depth to water value for [...].

– Cause: Error raised by the lower_dem_for_plants* function of the Modi-
fyTerrainclass inModifyTerrain/cModifyTerrain.py) when the threshold workbook
(LifespanDesign/.templates/thresh old_values.xlsx`) is not accessible or does not contain values for
Depth to water table (min) / max contains invalid data.

– Remedy: Ensure the correct setup of LifespanDesign/.templates/threshold_values.
xlsx (Modify Threshold Values within the LifespanDesign module). Note that ModifyTerrain starts
reading depth to water table values column by column, until it meets a non-numeric value.

• ERROR: Failed to save PDF map assembly.

– Cause: The make_pdf_maps(self, ...) function of the Mapper() class (.site_packages/
riverpy/cMapper.py) raises this error when the map assembly is corrupted.

– Remedy:

* PDF map export of Lifespan maps has troubles at the moment. We recommend to
open the automatically created project RiverArchitect/02_Maps/CONDITION/
maps_CONDITION_lyrXY.aprx and to export PDF maps in ArcGIS Pro: (1) Go to desired
layout tab; (2) Ensure map layout fits desired export; (3) Go to the Share ribbon and click on the
green arrow Layout (export layout).

* Ensure that no other program accesses the LifespanDesign/.cache/, MaxLifespan/
.cache/, ModifyTerrain/.cache/, LifespanDesign/Output/, MaxLifespan/
Output/, or ModifyTerrain/Output/ directories or their contents (close ArcGIS Pro and
verify read/write rights for RiverArchitect/02_Maps/CONDITION/).

• ERROR: Failed to save WORKBOOK.

– Cause: Raised by calculate_sha(self) of SHArC’s CHSI() class in SHArC/cHSI.py when it
could not save CONDITION_FILI.xlsx.

169

https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

– Remedy: Ensure that no other software uses SHArC/SHArea/CONDITION_FILI.xlsx.

• ERROR: Failed to set reach extents -- output is corrupted.

– Cause: The automated terrain modification with grading and/or widen features in the
lower_dem_for_plants(self, feat_id, extents) function of the ModifyTerrain()
class (ModifyTerrain/cModifyTerrain.py) or the creation of volume difference Rasters
in the make_volume_diff_rasters(self) function of the VolumeAssessment() class
(VolumeAssessment/cVolumeAssessment.py) raise this error when the reach extents defined
in ModifyTerrain/.templates/computation_extents.xlsx are not readable.

– Remedy: Follow the instructions in reach preparation within the ModifyTerrain module for correct reach
definitions.

• ERROR: FEAT SHORTNAME contains non-valid data or is empty.

– Cause: Raised by get_design_data(self) in MaxLifespan/cActionAssessment.py
when the feature shortname Raster is empty or the `shortname* itself does not match the code con-
ventions.

– Remedy:

* If code was modified: Review code modifications and ensure to define feature shortnames as listed
in the River Design and Restoration Features pages. If a new feature was added, it also needs
to be appended in the container lists (self.id_list, self.threshold_cols, self.
name_list) of the Feature() class in .site_packages/riverpy/cDefinit ions.
py. A new feature also requires modifications of the RiverArchitect/LifespanDesign/
.templates/threshold_values.xlsx spreadsheet (Modify Threshold Values within the
LifespanDesign module), in line with the column state in the self.threshold_cols* list
of the Feature()` class.

* Check consistency of suspected lifespan/design Rasters, the correctness of lifespan/design input di-
rectory definitions (MaxLifespan Quick GUIde) and if needed re-run lifespan/design Raster Maker.

• ERROR: Flow series analysis failed.

– Cause: The make_flow_duration(self, ...) function in riverpy/cFlows.py
(SeasonalFlowAssessment class) raises this error message when executing the self.
build_flow_duration_data(self) function failed.

– Remedy: The provided flow series workbook may be erroneous. Ensure that the workbook follows the
formats provided in 00_Flows7InputFlowSeries/flow_series_example_data.xlsx and
follow up previous warning and error messages.

• ERROR: Incoherent data in RAS (Raster comparison).

– Cause: Raised by compare_Raster_set(self, ...) function of the ArcPyAnalysis() class
in LifespanDesign/cLifespanDesignAnalysis.py when the provided input Raster RAS (hy-
draulic or scour fill or morphological units) are invalid.

– Remedy:

* Manually open the concerned RAS Raster and ensure that it complies with the requirements for input
Rasters stated in the Conditions / Input Rasters section.

* Verify that the Rasters defined in 01_Conditions/CONDITION/input_definitions.
inp (lines 8 to 18) correspond to the GRID Raster names in the select conditions folder in
01_Conditions/.

• ERROR: Input file not available.

– Cause: Raised by get_line_entries(self, line_no) function of the Info() class in
LifespanDesign/cRead InpLifespan.py when it cannot access input files.

170 Chapter 52. Error messages

River Architect, Release latest

– Remedy:

* Ensure that the file 01_Conditions/CONDITION/input_definitions.inp exists in the
directory LifespanDesign/.templates/ corresponding to the definitions in the Input defini-
tions files of the LifespanDesign module.

* Ensure that the file mapping.inp exists in the directory LifespanDesign/.templates/
corresponding to the definitions in LifespanDesign Output maps.

* In the case of doubts: Replace 01_Conditions/CONDITION/input_definitions.inp
and mapping.inp with the original files and re-apply modifications strictly following the Con-
ditions / Input Rasters section.

• ERROR: Input Rasters contain invalid data.

– Cause: Error raised by the D2W class (GetStarted/cDepth2Groundwater.py) or the DET class
(GetStarted/cDetrendedDEM.py) when the defined DEM or flow depth GeoTIFF are not usable.

– Remedy:

* Ensure that no other program uses the selected in DEM/flow depth Raster and Condition folder.

* Manually / visually verify the consistency of the provided DEM / flow depth Rasters.

* Avoid running both routines simultaneously and for multiple Conditions (there is only one .cache
folder that is locked by every process call).

• ERROR: Insufficient data. Check Raster consistency and add more flows(?).

– Cause: The compare_Raster_set(self, Raster_set, threshold) function in
LifespanDesign/cLifespanDesignAnalysis.py raises this error when insufficient hy-
draulic Rasters are provided or when the provided hydraulic Rasters have inconsistent data.

– Remedy:

* Make sure to provide at least two pairs of hydraulic (u and h) Rasters that correspond to two different
discharges (one u and one h Raster per discharge).

* As a rule of thumb: the more hydraulic Rasters provided, the better are the lifespan maps.

* Verify Raster and corresponding lifespan definitions in 01_Conditions/CONDITION/
input_definitions.inp (Input definitions files of the LifespanDesign module).

• ERROR: Invalid cell assignment for discharge / Rasters.

– Cause: Error raised by the make_condition_xlsx(self, fish_sn) function of the
MakeTable() class in .site_packages/riverpy/cMakeTable.py) when it cannot write dis-
charge values to RiverArchitect/SHArC/SHArea/CONDITION_FILI.xlsx.

– Remedy: Ensure that the flow duration curve is well defined (see the HHSI input preparation) and that
RiverArchitect/SHArC/SHArea/CONDITION_FILI.xlsx is not used by any other applica-
tion.

–

• ERROR: Invalid date and / or flow ranges in discharge series.

– Cause: Error raised by the make_flow_season_data(self, ...) function
(SeasonalFlowProcessor class in .site_packages/riverpy/cFlows.py) when the
data provided in the flow series workbook cannot be interpreted.

– Remedy: Ensure that the provided flow series workbook corresponds to the formats defined in the example
data set (00_Flows/InputFlowSeries/flow_series_example_data.xlsx). In particular,
the date and discharge columns and start rows are hard-coded (we will work on the issue in future . . .) and
need to correspond those in the sample data set.

171

River Architect, Release latest

• ERROR: Invalid date assignment (Fish.xlsx).

– Cause: Error raised by the get_season_dates(self, ...) function of the Fish() class in
.site_packages/riverpy/cFish.py ot the build_flow_duration_data(self) func-
tion (SeasonalFlowProcessor class in .site_packages/riverpy/cFlows.py) when ei-
ther function cannot read the dates defined in .site_packages/templates/Fish.xlsx.

– Remedy: Ensure that the date assignment in .site_packages/templates/Fish.xlsx corre-
sponds to template conditions.

• ERROR: Invalid feature ID.

– Cause: Error raised by the __init__(self, ...) function of the ThresholdDirector()
class in /LifespanDesign/cThresholdDirector.py, when the feature IDs (shortnames) in /
LifespanDesign/.templates/threshold_values.xlsx are incorrectly defined.

– Remedy:

* Ensure correct definitions in /LifespanDesign/.templates/threshold_values.xlsx
(Modify Threshold Values within the LifespanDesign module).

* Consider replacing corrupted threshold workbooks with the original file.

• ERROR: Invalid file name or data.

– Cause: Error raised by the save_close_wb(self, *args) function of the MakeTable()
or Write() class in .site_packages/riverpy/cMakeTable.py) or RiverArchitect/.
site_packages/riverpy/cInputOutput.py), respectively, when it cannot save a workbook
(typically RiverArchitect/SHArC/SHArea/CONDITION_FILI.xlsx or a copy of the cost
master workbook).

– Remedy:

* SHArC: Close all applications that may use CONDITION_FILI.xlsx and ensure that its template
exists. Detailed information on SHArC workbook outputs are available in the HHSI input preparation.

* ProjectMaker: Close all applications that may use the cost master workbook
(REACH_stn_costs_VERSION.xlsx) and ensure that it exists. Detailed information is
available in ProjectMaker Cost quantity section.

• ERROR: Invalid interpolation data type (type(Q flowdur) == ...)

– Cause: Raised by interpolate_flow_exceedance(self, Q_value) of SHArC’s
FlowAssessment() class in SHArC/cFlows.py when the flow duration curve contains in-
valid data.

– Remedy: Ensure the correct setup of the used flow duration curve in SHArC/FlowDurationCurves/
. The file structure must correspond to that of the provided template flow_duration_template.
xlsx. Review the HHSI input preparation for details.

• ERROR: Invalid x-y coordinates in extent source [mapping.inp / reaches].

– Cause: The make_pdf_maps(self, ...) function of the Mapper class in .site_packages/
riverpy/cMapper.py raises this error when either the LifespanDesign/.templates/
mapping.inp, MaxLifespan/.templates/mapping.inp, or ModifyTerrain/.
templates/computation_extents.xlsx contains invalid map definitions (extents).

– Remedy: Ensure that the extent definitions in LifespanDesign/.templates/mapping.inp
and/or ModifyTerrain/.templates/computation_extents.xlsx are valid numeric values
according to the module descriptions.

• ERROR: Invalid keyword for feature type.

172 Chapter 52. Error messages

https://github.com/RiverArchitect/RA_wiki/ProjectMaker#pmcq
https://github.com/RiverArchitect/RA_wiki/ProjectMaker#pmcq
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/ProjectMaker
https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

– Cause: The Manager class in MaxLifespan/cFeatureActions.py raises this error
when it received a feature_type argument that is not "terraforming", "plantings",
"nature-based engineering", or "maintenance". The error may occur either af-
ter code modifications or whengeo_file_maker(condition, feature_type, *args) in
MaxLifespan/action_planner.py was executed as standalone or imported as a package in an
external application.

– Remedy:

* Ensure that code extensions comply with coding conventions and instructions in the MaxLifespan
module code modification possibilities.

* Ensure that external calls of geo_file_maker(condition, feature_type, *args)
contain an acceptable feature_type (i.e., feature_type= either "terraforming",
"plantings", "nature-based engineering", or "maintenance").

• ERROR: Invalid reference map for [...] (skipping).

– Cause: Error raised by mapping routines when the reference map is not present in the mapping project
template or the Condition project file (.aprx).

– Remedy: Verify that the project file contains all default layouts and maps (layout and map names should
be identic).

• ERROR: Invalid volume name.

– Cause: Error raised by the write_volumes(self, ...) function of the Writer() class
in .site_packages/riverpy/cReachManager.py, when the template sheet in the out-
put (or template) workbook (VolumeAssessment/Output/CONDITION_volumes.xlsx or
VolumeAssessment/.templates/volume_template.xlsx) are inaccessible.

– Remedy: Ensure that VolumeAssessment/Output/CONDITION_volumes.xlsx or
VolumeAssessment/.templates/volume_template.xlsx are not opened in any other
program.

• ERROR: Lifespan data fetch failed.

– Cause: The get_lifespan_data(self) orget_design_data(self) function of the
ArcpyContainer class in MaxLifespan/cActionAssessment.py raise this error when it could
not retrieve lifespan or design maps from the defined lifespan/design input directory.

– Remedy:

* Check lifespan/design folder definitions (review MaxLifespan Quick GUIde).

* Ensure that lifespan and/or design Rasters are in the defined folder.

• ERROR: Mapping could not assign xy-values. Undefined zoom.

– Cause: Error raised by the zoom2map(self, xy) functions of the Mapper() class (.
site_packages/riverpy/cMapper.py) when it receives a bad format of x-y values.

– Remedy:

* LifespanDesign or MaxLifespan: Ensure the correct format of mapping.inp is correct.

* ModifyTerrain: Ensure correct setup of ModifyTerrain/.templates/
computation_extents.xlsx (reach preparation within the ModifyTerrain module).

* For more settings, review the Mapping wiki.

• ERROR: Mapping failed.

– Cause: The make_pdf_maps(self, ...) function of the Mapper() class (.site_packages/
riverpy/cMapper.py) raises this error when it could not create PDF maps.

173

https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain

River Architect, Release latest

– Remedy: Ensure that all layouts (see module-specific layout names) are consistently de-
fined in RiverArchitect/02_Maps/templates/river_template.aprx and/or
RiverArchitect/02_Maps/CONDITION/map_CONDITION_design.aprx. Note that
modifying layout and/or layer names may cause this error. Therefore, the template layer and layout names
must not be changed. Read more about modifications of the smybology, legend, map extents, or code
modifications in the Mapping wiki.

• ERROR: Map layout preparation failed.

– Cause: The prepare_layout(self, ...) function of the Mapper() class (.
site_packages/riverpy/cMapper.py) raises this error when it encounters problems with
either the provided Rasters or the layouts in the ArcGIS project file (.aprx).

– Remedy:

* LifespanDesign: If a layout was modified (see default list), ensure that links to databases and datasets
are correct.

* MaxLifespan: Ensure that all relevant layouts (see default list) are contained in the ArcGIS project file
(see mapping descriptions). If needed, add new layouts after code modifications (the MaxLifespan
module code modification possibilities).

* VolumeAssessment: Ensure that all relevant layouts (see default list) are contained in the ArcGIS
project file (see mapping descriptions).

• ERROR: Missing (or wrong format of) Raster input definitions.

– Cause: Raised by get_line_entries(self, line_no) function of the Info() class
in LifespanDesign/cReadInpLifespan.py when 01_Conditions/CONDITION/
input_definitions.inp is corrupted.

– Remedy: Ensure that the file 01_Conditions/CONDITION/input_definitions.inp exists in
the directory LifespanDesign/.templates/ corresponding to the definitions in the input defini-
tions files. In case of doubts: Replace 01_Conditions/CONDITION/input_definitions.inp
with the original file and re-apply modifications strictly following the Conditions / Input Rasters section.

• ERROR: Multiple openings of Fish.xlsx. Close all office apps ...

– Cause: Raised by the assign_fish_names(self) function of the Fish() class in .
site_packages/riverpy/cFish.py when .site_packages/templates/Fish.xlsx is
opened by another program or non-existent.

– Remedy: Ensure that the file .site_packages/templates/Fish.xlsx exists and close any soft-
ware that may use the workbook.

• ERROR: No HSI assigned for parameter type ...

– Cause: Raised by the get_hsi_curve(self, species, lifestage, par) function of the
Fish() class in SHArC/cFish.py when .site_packages/templates/Fish.xlsx it ex-
pected a habitat suitability curve for `par*, but it could not find values..

– Remedy: Ensure that the file .site_packages/templates/Fish.xlsx has valid contents accord-
ing to SHArC Fish section.

• ERROR: No project/layout available (...).

– Cause: Error raised by mapping routines when map making without project file (.aprx) is invoked.

– Remedy: Verify that the project file contains all default layouts.

• ERROR: No reference layout found for [...] (skipping).

– Cause: Error raised by mapping routines when the geofile to be mapped is not associated with any layout
in the template or Condition project file (.aprx).

174 Chapter 52. Error messages

https://github.com/RiverArchitect/RA_wiki/LifespanDesign
https://github.com/RiverArchitect/RA_wiki/MaxLifespan

River Architect, Release latest

– Remedy: Verify that the project file contains all default layouts.

• ERROR: No reference map found for [...] (skipping).

– Cause: Error raised by mapping routines when the geofile to be mapped is not associated with any map in
the template or Condition project file (.aprx).

– Remedy: Verify that the project file contains all default layouts (the layout and map names should be
identic).

• ERROR: *PAR* - Raster copy to Output/Rasters folder failed.

– Cause: The .cache folder does not exist or does not contain GRID Rasters or the output folder is not
accessible. This error is likely to occur when other errors occurred previously.

– Remedy:

* Follow troubleshooting of other error messages and re-run.

* Avoid modifications of any folder in the code directory while the program is running, in partic-
ular, .cache, 01_Conditions/, LifespanDesign/Output/Rasters/ and 02_Maps/
CONDITION/.

• ERROR: Raster copy to Output folder failed.

– Cause: The save_Rasters(self) function of the ModifyTerrain() class in
ModifyTerrain/cModifyTerrain.py raises this error when saving a terrain difference or
new DEM Raster failed.

– Remedy: Refer to the error ERROR: Raster could not be saved. message.

• ERROR: Raster could not be saved.

– Cause: The save_rasters(self) function of the ModifyTerrain() (ModifyTerrain/
cModifyTerrain.py) or the VolumeAssessment class (VolumeAssessment/
cVolumeAssessment.py) raise this error when a terrain differences or new DEM Raster is
corrupted.

– Remedy: Potential reasons for corrupted Rasters are:

* The computed volume difference or new DEM Raster is empty or contains NoData pixels only. The
design parameters or Raster of the concerned feature need to be reviewed.

* The ModifyTerrain/.cache/ folder is locked by another program. Close potential applications,
and if necessary, reboot the system.

* If ModifyTerrain/.cache/ was not empty before the module execution, error may occur. Man-
ually delete ModifyTerrain/.cache/ if it still exists after a run task.

* The directory ModifyTerrain/Output/Rasters/CONDITION/ or VolumeAssessment/
Output/PSEUDO_CONDITION/ was deleted or it is locked by another program. Ensure that the
directory exists and no other program uses ModifyTerrain/Output/Rasters/CONDITION/
or VolumeAssessment/Output/PSEUDO_CONDITION/ or their contents.

• ERROR: Scale is not INT. Substituting scale: 2000.

– Cause: Raised by get_map_scale(self) function of the Info() class in either
LifespanDesign/cReadInpLifespan.py or MaxLifespan/cReadActionInput.py
when it cannot interpret the value assigned to the map scale.

– Remedy: Ensure that the file mapping.inp (in LifespanDesign/.templates/ or
MaxLifespan /.templates/) has a correct assignment of the map scale according to the descrip-
tions in LifespanDesign Output maps.

• ERROR: Shapefile conversion failed.

175

River Architect, Release latest

– Cause: Raised by calculate_sha(self) of SHArC’s CHSI() class in SHArC/cHSI.py when it
could not convert the CHSI Raster to a shapefile.

– Remedy:

* Ensure that the SHArea threshold has a meaningful value between 0.0 and 1.0 (SHArC Intro).

* Ensure that neither the directory SHArC/.cache/ nor the directory SHArC/SHArea/ or their
contents are in use by other programs.

* Review the input settings according to SHArC Quick GUIde.

* Follow up earlier error messages.

• ERROR: TEMPLATE sheet does not exist.

– Cause: Error raised by the make_condition_xlsx(self, fish_sn) of the MakeTable()
class in .site_packages/riverpy/cMakeTable.py) when the template sheet in the
output (template) workbooks SHArC/.templates/CONDITION_sharea_template_[...].
xlsx) are corrupted.

– Remedy: Ensure that SHArC/.templates/CONDITION_sharea_template_[...].xlsx con-
tains the summary sheet and that SHArC/.templates/empty.xlsx is available; re-install the tem-
plates if necessary.

• ERROR: The provided boundary file (%s) is invalid.

– Cause: Raised the GetStarted module’s sub-condition creator function (make_sub_condition in
RiverArchitect/GetStarted/fSubCondition.py), when the defined shapefile or Raster con-
tains invalid data.

– Remedy: Ensure that the provided shapefile or Raster fullfils the requirements explained in the GetStarted
- Create Sub-Condition section.

• ERROR: The Raster name is not coherent with the name conventions. Name
correction needed.

– Cause: Error raised by the MakeFlowTable class (riverpy/cMakeTable.py) when a Raster was
wrongly identified as being a flow depth Raster because of a violation of file name conventions.

– Remedy: Ensure that all file names in the 01_Conditions/CONDITION/ folder follow the file name
conventions. If the Condition folder contains other files than flow depth and velocity GeoTiff s starting with
the letter h or u, rename these files or remove them from the Condition folder.

• ERROR: The selected folder does not contain any depth/velocity Raster
containing the defined string.

– Cause: Error raised by the ConditionCreator class (GetStarted/cConditionCreator.py)
when the defined folder does not contain any valid depth or velocity Raster.

– Remedy:

* Ensure that no other program uses the selected folder.

* Manually / visually verify the selected folder and provided settings for creating the Condition.

• ERROR: The source discharge file contains non-detectable formats (...).

– Cause: The date format provided in the hydraulic habitat suitability index flow duration curve preparation
file contains invalid date formats.

– Remedy: Ensure that the select flow series file corresponds to the file requirements. Use
the provided example data file (RiverArchitect/SHArC/FlowDurationCurves/
flow_series_example_data.xlsx) as template workbook for preparing flow series. The

176 Chapter 52. Error messages

https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

flow series workbook must be an .xlsx file and the dates must be contained in col. A, starting from row
3. The default format is DD-MMM-YY (e.g., 14-June-88 for June 14th, 1988).

• ERROR: u/h/hyd--Raster analysis does not accept ras_*name* Raster.

– Cause: Internal programming error: A parameter module called a Raster which does not match the batch
processing hierarchy.

– Remedy: Move new model downward in the processing hierarchy and avoid calling an u/h/hyd–Raster
with the optional argument Raster_info.

• ERROR: Volume value assignment failed.

– Cause: Error raised by the write_volumes(self, ...) function of the Writer() class in .
site_packages/riverpy/cReachManager.py) when it received invalid volume data.

– Remedy: Ensure that no other program uses VolumeAssessment/Output/CONDITION_volume.
xlsx and traceback earlier errors (modified DEM Rasters may be corrupted).

• ERROR: Writing failed.

– Cause: Error raised by the write_volumes(self, ...) function of the Writer() class
in .site_packages/riverpy/cReachManager.py) when the template it could not add
new sheets in VolumeAssessment/Output/CONDITION_volumes.xlsx or write to copies of
VolumeAssessment/templates/volume_template.xlsx.

– Remedy: See error message ERROR: Failed to create WORKBOOK.

• ERROR: Wrong format of lifespan list (.inp)

– Cause: Raised by lifespan_read(self) (in LifespanDesign/cReadInpLifespan.py)
when the lifespan list in 01_Conditions/CONDITION/input_definitions.inp has a wrong
format or is empty.

– Remedy: Ensure that the file 01_Conditions/CONDITION/input_definitions.inp (in
LifespanDesign/.templates/) contains a lifespan list (return periods list) with not more than six
comma-separated entries according to the definitions in the Input definitions files of the LifespanDesign
module.

• ExceptionERROR: (arcpy) [...].

– Cause: The error is raised if any arcpy application of any module encountered prob-
lems; e.g., the analysis_... and design_... functions in LifespanDesign/
cLifespanDesignAnalysis.py raise this error when Raster calculations could not be performed.
Missing Rasters, bad Raster assignments or bad Raster calculation expressions are possible reasons. The
error can also occur when the SpatialAnalyst license is not available.

– Remedy:

* Make sure that a SpatialAnalyst license is available.

* Trace back previous error and warning messages.

* Verify Raster calculation expressions in concernedanalysis_... and design_... functions
(LifespanDesign/cLifespanDesignAnalysis.py).

* Verify Raster definitions in concernedanalysis_... and design_... functions
(LifespanDesign/cLifespanDesignAnalysis.py).

* Verify Raster definitions of used parameters (cParameters.py and input files *.inp according
to the Conditions / Input Rasters section).

* If further system errors are stated, trace back error messages.

• ExceptionERROR: Cannot find package files [...].

177

River Architect, Release latest

– Cause: The program cannot retrieve the listed internal files.

– Remedy: Check the installation of the package and its file structure according to the Requirements stated
in the Introduction and Installation.

• ExceptionERROR: Cannot open reference (condition) ...

– Cause: Raised by the ModifyTerrain() class (__init__(self,condition,
feature_type, *args)) in ModifyTerrain/cModifyTerrain.py when it cannot find
a . . . Raster in 01_Conditions/CONDITION/ (or other user-defined input directory), where . . . is
either a dem.tif or a wt_depth_base.tif Raster. A wt_depth_base.tif Raster is required
for automated terrain modification after grading and/or widen features.

– Remedy: Ensure that the missing Raster (dem or a wt_depth_base) exists in 01_Conditions/
CONDITION/, or if applies, the user-defined input directory. If no wt_depth_base.tif Raster is
available, the terrain modification of grading and/or widen features cannot be automated. In this case, con-
sider adding a new DEM automation function (explained in the Add Routine section in the ModifyTerrain
module) or modifying the DEM manually.

• ExceptionERROR: Could not find base Raster for assigning lifespans.

– Cause: Raised by MaxLifespan’s ArcpyContainer() class (__init__(self,condition,
feature_type, *args)) in MaxLifespan/cActionAssessment.py when it cannot find its
zero Raster template in MaxLifespan/.templates/Rasters/zeros.tif.

– Remedy: Follow the instructions for the error message ExceptionERROR: Unable to
create ZERO Raster. Manual intervention required:... to manually create the
MaxLifespan/.templates/Rasters/zeros.tif Raster.

• ExceptionERROR: Missing fundamental packages (required: ...).

– Cause: The listed (required) packages are not available.

– Remedy: Check installation of required packages and code structure files according to the Requirements
stated in the Introduction and Installation.

• ExceptionERROR: Unable to create ZERO Raster. Manual intervention required

– Cause: MaxLifespan failed to create a zero Raster covering the computation area.

– Remedy: The Raster creation needs to be manually made in ArcGIS Pro’s Python interpreter (the external
interpreter could not do the job and only the cuckoo from California knows why). Thus, manually create
the zeros Raster as follows:

* Launch ArcGIS Pro and its implemented Python window (Geoprocessing dropdown menu:
Python).

* Enter the following sequences (replace REPLACE_... according to
the local environment): import os from arcpy.sa import *
zero_ras_str = os.getcwd() + ".templates\Rasters\zeros.
tif" condition = "REPLACE_CONDITION" base_dem = arcpy.
Raster("REPLACE_PATHRiverArchitectLifespanDesignInput" + condition
+ "dem.tif")
 arcpy.gp.overwriteOutput = True
 arcpy.env.extent =
base_dem.extent
 arcpy.env.workspace = “D:\PythonRiver\Architect\LifespanDesign\Input”
+ condition + “”
 zero_ras = Con(IsNull(base_dem), 0, 0)

zero_ras.save(zero_ras_str)`

* Close ArcGIS Pro

• ExecuteERROR: (arcpy) [...].

178 Chapter 52. Error messages

https://github.com/RiverArchitect/RA_wiki/MaxLifespan
https://github.com/RiverArchitect/RA_wiki/MaxLifespan

River Architect, Release latest

– Cause: Similar toExceptionERROR: (arcpy) The error is raised by arcpy applications
of all modules; e.g., by the analysis_... and design_... functions in LifespanDesign/
cLifespanDesignAnalysis.py or when Raster calculations could not be performed. Missing
Rasters, bad Raster assignments or bad Raster calculation expressions are possible reasons. The error
can also occur when the SpatialAnalyst license is not available.

– Remedy: See ExceptionERROR: (arcpy) [...]

• Internal Error:

– Cause: Internal Error messages are raised when the code communicates erroneous data between class
functions.

– Remedy:

* If the code was modified, revise or revert changes.

* If Internal Errors occur that are not known issues as stated in other error messages, please pro-
vide us with feedback (use the bug report template or send us an email: river.architect.program [at]
gmail.com)

• OSError:

– Cause: arcpy raises this error for various reasons; in particular, if code was modified or the code envi-
ronment is not set up properly.

– Remedy: Check the correct installation of River Architect and input files (refer to the Installation and
Signposts pages and use the correct Python environment). Make sure that no other program uses files
required by River Architect.

• WindowsError: [Error 32] The process cannot access the file because ...

– Cause: Files in the .cache folder or the Output folder are used by another program.

– Remedy:

* Make sure that ArcGIS Pro is not running.

* Make sure that no other code copy (Python) uses these folders.

179

https://github.com/riverarchitect/program/blob/master/.github/ISSUE_TEMPLATE/bug_report.md

River Architect, Release latest

180 Chapter 52. Error messages

CHAPTER

FIFTYTHREE

WARNING MESSAGES

• WARNING: .cache folder will be removed by package controls.

– Cause: Raised by clear_cache(self) of SHArC’s CHSI() class in SHArC/cHSI.py when it
could not clear and remove the .cache/ folder.

– Remedy: Ensure that no other software uses the temporary Rasters stored in SHArC/.cache/, and if
necessary, delete the folder manually after quitting the module.

• WARNING: ### is not a number.

– Cause: Functions raise this warning message when a float-number type was expected, but another,
non-convertible format was provided.

– Remedy: Verify if the results are consistent. If problems occur, make sure that the provided input data
contain numbers or valid nan formats (NoData for Rasters and empty cells for workbooks) only.

• WARNING: Bad value (...).

– Cause: Raised by calculate_sha(self) of SHArC’s CHSI() class in SHArC/cHSI.py when a
CHSI polygon contains an invalid value.

– Remedy: Review cHSI Rasters SHArC/CHSI/CONDITION/.

• WARNING: Cannot identify reaches.

– Cause: Raised by VolumeAssessment().__init__(...) in VolumeAssessment/
cVolumeAssessment.py when the provided reach names are inconsistent with those listed in
ModifyTerrain/.templates/computation_extents.xlsx.

– Remedy: Ensure that ModifyTerrain/.templates/computation_extents.xlsx does not
contain more than eight reaches (i.e., only cells B6:C13 contain reach names and identifiers, also see
reach preparation within the ModifyTerrain module).

• WARNING: Cannot load ...\LifespanRasterSymbology.lyrx.

– Cause: Raised by prepare_layout(...) of the Mapper() (.site_packages/riverpy/
cMapper.py) when it cannot load /RiverArchitect/02_Maps/templates/symbology/
LifespanRasterSymbology.lyrx.

– Remedy: Ensure that /RiverArchitect/02_Maps/templates/symbology/
LifespanRasterSymbology.lyrx exists and that the layer file is not broken (e.g., by opening the
file in ArcGIS Pro).

• WARNING: Cannot zoom to defined extent.

– Cause: Raised by the zoom2map(...) function of the Mapper() class (.site_packages/
riverpy/cMapper.py) when it cannot interpret the provided coordinates.

– Remedy:

181

https://github.com/RiverArchitect/RA_wiki/SHArC
https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

* All modules: Ensure that the mapping.inp and the reach definitions files contain valid
data.

* LifespanDesign: Ensure that either a correct background Raster dataset was defined prior to mapping.

• WARNING: computation_extents.xls contains too many reach names.

– Cause: Raised by Read().get_reach_info(self, type) in .site_packages/riverpy/
cReachManager.py when ModifyTerrain/.templates/computation_extents.xlsx
contains more than eight reach names in columns B and/or C.

– Remedy: Ensure that ModifyTerrain/.templates/computation_extents.xlsx does not
contain more than eight reaches (i.e., only cells `B6:C13* contain reach names and identifiers, also see
reach preparation within the ModifyTerrain module).

• WARNING: Conversion to polygon failed (FEAT).

– Cause: Raised by identify_best_features(self) in MaxLifespan/
cActionAssessment.py when the arcpy.RasterToPolygon_conversion(FEAT
Raster) failed (e.g., because of an empty FEAT Raster).

– Remedy: An empty FEAT Raster of best lifespans occurs when the feature has no spatial relevance. Con-
sider other terrain modifications or maintenance features to increase the features lifespans and start over
planning the feature (set).

• WARNING: Could not access hydraulic Raster extents. Using MAXOF instead.

– Cause: Raised by the D2W class (GetStarted/cDepth2Groundwater.py) when the defined flow
depth GeoTIFF has no valid extents.

– Remedy: Manually / visually verify the provided flow depth Raster and make corrections / overwrite it if
necessary.

• WARNING: Could not clear/remove .cache.

– Cause: All modules may raise this warning message when the content in the .cache folder was accessed
and locked by another software.

– Remedy: Make sure that no other software, including ArcGIS Pro or explorer.exe, uses the MODULE/
.cache folder.

• WARNING: Could not clean up PDF map temp_pages.

– Cause: The make_pdf_maps(self, map_name, *args, **kwargs) functions of the
Mapper() class (.site_packages/riverpy/cMapper.py) creates single PDFs of every map
image (extents defined in mapping.inp or the reach coordinates workbook). These single-page PDFs are
finally combined into one PDF map assembly and the single-page PDFs are deleted afterward.

– Remedy: Ensure that no other program is using the PDF files in RiverArchitect/02_Maps/
CONDITION/ while mapping is in progress (close ArcGIS Pro).

• WARNING: Could not crop lifespan Raster extents to wetted area.

– Cause: Raised by the ArcPyAnalysis class (LifespanDesign/
cLifespanDesignAnalysis.py) when it failed to crop lifespan maps (Rasters) to the extents
of the depth Raster associated with the highest discharge analyzed.

– Remedy:

* Manually / visually verify the provided flow depth Rasters and make corrections / overwrite it if
necessary.

* If cropping the lifespan Raster to the wetted area of the highest discharge is not desired, apply the
following Raster calculation to the highest discharge’s flow depth Raster to eliminate NoData values

182 Chapter 53. Warning messages

River Architect, Release latest

(otherwise, all NoData pixels are excluded from the lifespan Raster): Con((IsNull(hQQQQQQ)
== 1), (IsNull(hQQQQQQ) * 0), Float(hQQQQQQ))

• WARNING: Could not divide [...] by [...]

– Cause: Raised by calculate_relative_exceedance(self) of SHArC’s
FlowAssessment() class in SHArC/cFlows.py when the flow duration curve contains in-
valid data.

– Remedy: Ensure the correct setup of the used flow duration curve in SHArC/FlowDurationCurves/
. The data types and file structure must correspond to that of the provided template flow_duration
_template.xlsx and all discharge values need to be positive floats. Review the HHSI input preparation
for details.

• WARNING: Could not find Lifespan Raster (...).

– Cause: Raised by the ProjectMaker/s30_terrain_stabilization/’s or ProjectMaker/
s21_plantings_stabilization/’s main() function when it cannot find lifespan Rasters.

– Remedy: Go to the LifespanDesign tab for the selected Condition. Create lifespan maps for the
goup layers plantings, nature-based engineering, and connectivity. ProjectMaker absolutely requires
Grains / Boulders (lf_grains.tif), and optionally requires Streamwood (lf_wood.tif)
and nature-based engineering (other) (lf_bio.tif).

• WARNING: Could not get flow depth Raster properties. Setting [...]

– Cause: The crop_input_Raster(self, ...) function (SHArC/cHSI.py) prints this warning
message when it cannot read the Raster properties from the defined input flow depth Raster.

– Remedy: Make sure that the defined flow depth Raster exists in RiverArchitect/01_Conditions/
CONDITION/.

• WARNING: Could not get minimum flow depth [...]. Setting h min [...]

– Cause: The crop_input_Raster(self, ...) function (SHArC/cHSI.py) prints this warning
message when it could not read the minimum flow depth from Fish.xlsx. A default value of 0.1 (ft or
m) is used to delineate relevant flow regions.

– Remedy: Make sure that the defined Fish species / lifestage is assigned a cover value and at least one flow
depth value in Fish.xlsx according to the definitions in CoverHSI.

• WARNING: Could not identify maximum flow in flow duration curve.

– Cause: The get_flow_duration_data(self, ...) function (riverpy/cFlows.py) prints
this warning message when it could not identify a maximum flow for interpolating flow exceedance prob-
abilities.

– Remedy: Open 00_Flows/CONDITION/flow_duration_fili and verify that the discharges in
the first spreadsheet are correct.

• WARNING: Could not load /01_Conditions/CONDITION/back.tif - ...

– Cause: The sect_extent() function (LifespanDesign/cLifespanDesignAnalysis.py)
prints this warning message when it could not load the back.tif Raster in the CONDITION folder.
This warning message can only occur when the checkbox Limit computation extent to
background (back.tif) Raster is activated.

– Remedy: Make sure that there is a back.tif Raster in the CONDITION folder. Otherwise, uncheck the
checkbox, but using a background Raster back.tif is strongly recommended.

• WARNING: Could not reset styles.

– Cause: Raised by Write().write_volumes(self, ...) in .site_packages/
riverpy/cReachManager.py when the template sheet in the output (template) workbook

183

https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

(VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.
templates/volume_template.xlsx) is either locked or not accessible.

– Remedy: Ensure that no other program uses VolumeAssessment/Output/
CONDITION_volumes.xlsx or VolumeAssessment/.templates/volume_template.
xlsx and that both workbooks have not been accidentally deleted.

• WARNING: Could not read project area extents.

– Cause: Raised by SHArC.get_extents(self, ...) in ProjectMaker/cSHArC.pywhen the
function failed to read the project area extents from the ProjectArea.shp shapefile.

– Remedy: Ensure that the ProjectArea.shp shapefile is correctly created (in particular the Attributes
Table), according to Project Area Polygon preparation.

• WARNING: Could not remove .cache folder.

– Cause: Raised by multiple modules, if deleting the temporary .cacheXXXXXXX folder failed.

– Remedy: Ensure that no other program uses the cache folder and delete exiting .cache folders in the
concerned modules manually.

• WARNING: Could not set project area extents ().

– Cause: Raised by SHArC().set_env(self) in /ProjectMaker/cSHArC.py when the function
failed to set project area extents.

– Remedy: Occurs when the CHSI Raster associated with a certain discharge is empty. Ignore this Warning
if the CHSI Raster was correctly identified as being empty, otherwise, revise CHSI Raster creation with
the SHArC module.

• WARNING: Design map - Could not assign frequency threshold. [...]

– Cause: Design maps, such as stable grain size, refer to hydraulic data related to a defined re-
turn period. Ifdesign_... functions) LifespanDesign/cLifespanDesignAnalysis.
py) cannot identify a particularthreshold_freq value,design_... functions automatically
try to use hydraulic data related to the first entry of lifespans* (Return periodsentry
in01_Conditions/CONDITION/input_definitions.inp`, see the Input definitions files of the Lifespan-
Design module).

– Remedy:

* Assign a float value to the concerned feature in the Mobility frequency threshold row
of the LifespanDesign/.templates/threshold_values.xlsx spreadsheet (see also
Modify Threshold Values within the LifespanDesign module).

* Make sure that the defined defined Mobility frequency
threshold* float is consistent with the defined Return peri-
odsin01_Conditions/CONDITION/input_definitions.inp` (see the Input definitions files of the
LifespanDesign module).

• WARNING: Empty design Raster [...]

– Cause: The analyzed feature is not applicable in the defined range.

– Remedy:

* If the feature is not intended to be applied anyway, ignore the warning message.

* If the feature is intended to be applied, manual terrain modifications adapting the feature’s threshold
values may be necessary.

• WARNING: Empty lifespan Raster [...]

– Cause: The analyzed feature is not applicable in the defined range.

184 Chapter 53. Warning messages

https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

– Remedy:

* If the feature is not intended to be applied anyway, ignore the warning message.

* If the feature is intended to be applied, manual terrain modifications adapting the feature’s threshold
values may be necessary.

• WARNING: Failed to align input raster [...].

– Cause: Raised by ConditionCreator().fix_alignment in GetStarted/
cConditionCreator.py when it could not align the stated raster.

– Remedy: Verify if the stated Raster contains invalid values (exists). Complex filenames that do not comply
with the River Architect filename convention may also cause this error. Rename all files with the Tools/
rename_files.py script (see inline code comments for instructions) to adapt all files to the River
Architect filename convention and re-run Align Rasters (if required).

• WARNING: Failed to arrange worksheets.

– Cause: Raised by Write().write_volumes(self, ...) in .site_packages/riverpy/
cReachManager.py when it could not bring to the front the latest copy of the template sheet in
the output (template) workbook (VolumeAssessment/Output/CONDITION_volumes.xlsx or
VolumeAssessment/.templates/volume_template.xlsx), which contains the calculation
results.

– Remedy: Traceback earlier error and warning messages. Ensure that no other program
uses VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.
templates/volume_template.xlsx and that both workbooks have not been accidentally deleted.

• WARNING: Failed to write unit system to worksheet.

– Cause: Raised by Write().write_volumes(self, ...) in .site_packages/riverpy/
cReachManager.py when it could not write volume (numbers) to a copy of the template sheet in
the output (template) workbook (VolumeAssessment/Output/CONDITION_volumes.xlsx or
VolumeAssessment/.templates/volume_template.xlsx).

– Remedy: Traceback earlier error and warning messages. Ensure that no other program
uses VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.
templates/volume_template.xlsx and that both workbooks have not been accidentally deleted.

• WARNING: Flow_duration[...].xlsx has different lengths of [...]"

– Cause: Raised by get_flow_data(self, *args) of SHArC’s FlowAssessment() class in
SHArC/cFlows.py when the flow duration curve contains invalid data.

– Remedy: Ensure that columns B and C of the flow duration curve workbook have the same length (in
particular the last value/row must be the same) and check for empty cells.

• WARNING: Identification failed (FEAT).

– Cause: Raised by identify_best_features(self) in MaxLifespan/
cActionAssessment.py when the analyzed feature cannot be matched with the internal best
lifespan Raster.

– Remedy: Features with very low lifespan may result in empty Rasters. Consider other terrain modifications
or maintenance features to increase the features lifespans and start over planning the feature (set).

• WARNING: Invalid curve data (Fish.xlsx): PAR= ... , HSI=

– Cause: Raised by HHSI().nested_con_raster_calc(self, ...) in SHArC/cHSI.py
when the HSI curve data provided in .site_packages/templates/Fish.xlsx are non-numeric
or otherwise invalid.

– Remedy:

185

https://github.com/RiverArchitect/RA_wiki/SHArC

River Architect, Release latest

* Ensure that Physical Habitats in Fish.xlsx are correctly defined according to the definitions.

* Ensure that the curve data in Fish.xlsx are suitable numeric values for linear interpolation.

• WARNING: Invalid feature names for column headers.

– Cause: Raised by Write().write_volumes(self, ...) in .site_packages/riverpy/
cReachManager.py when it could not write feature names to a copy of the template sheet in
the output (template) workbook (VolumeAssessment/Output/CONDITION_volumes.xlsx or
VolumeAssessment/.templates/volume_template.xlsx).

– Remedy:

* Ensure that ModifyTerrain/.templates/computation_extents.xlsx contains valid
reach descriptions (reach preparation within the ModifyTerrain module).

* Ensure that no other program uses VolumeAssessment/Output/CONDITION_ volumes.
xlsx or VolumeAssessment/.templates/volume_template.xlsx and that both work-
books have not been accidentally deleted.

• WARNING: Invalid alignment Raster name ([...]).

– Cause: Raised by ConditionCreator().fix_alignment(self, ...) in GetStarted/
cConditionCreator.py when it could not open the stated raster.

– Remedy: Complex filenames that do not comply with the River Architect filename convention may also
cause this error. Rename all files with the Tools/rename_files.py script (see inline code comments
for instructions) to adapt all Raster filenames to the River Architect filename convention and re-run Align
Rasters (if required).

• WARNING: Invalid type assignment -- setting reach names to IDs.

– Cause: Raised by Read().get_reach_info(self, type) in .site_packages/
riverpy/cReachManager.py when The type argument is notfull_name*
orId. In this case, the [*ModifyTerrain*][5] module uses column
CinModifyTerrain/.templates/computation_extents.xlsx` for reach names and IDs.

– Remedy: This warning message only occurs if the GUI application was changed or when the ModifyTer-
rain module is externally called with bad argument order. Review the argument order/assignments in
the external call and ensure that The type* variable is in the allowed_types = [“full_name”,
“id”]` list.

• WARNING: Invalid unit_system identifier.

– Cause: Raised by ModifyTerrain.__init__() (ModifyTerrain/cModifyTerrain.py)
or the VolumeAssessment.__init__() (VolumeAssessment/cVolumeAssessment.py)
when the unit system identifier is not either us or si. The program will use the default unit system (U.S.
customary).

– Remedy: This warning message only occurs if the GUI application was changed or when the ModifyTer-
rain module is externally called with bad argument order. Review the argument order/assignments in the
external call var = mt.ModifyTerrain(condition=..., unit_system=..., ...).

• WARNING: Merge operation failed (empty shapefiles?).

– Cause: Raised by the ProjectMaker/s30_terrain_stabilization/’s main() function
when the nature-based engineering and Angular Boulder shapefiles for stabilizing the terrain failed.

– Remedy: One or both stabilization shapefiles (ProjectMaker/ProjectName/Geodata/
Shapefiles/Terrain_stab.shp or .../Terrain_boulder_stab.shp) may be empty.
Check source data or consider to change the user-defined requried critical lifespan.

• WARNING: No Lifespan / Design Raster found (...).

186 Chapter 53. Warning messages

https://github.com/RiverArchitect/RA_wiki/ModifyTerrain
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain
https://github.com/RiverArchitect/RA_wiki/ModifyTerrain

River Architect, Release latest

– Cause: Raised by the MaxLifespan’s Director class (MaxLifespan/cFeatureActions.py)
when it cannot find any valid lifespan or design Raster for a condition.

– Remedy: Make sure to run the LifespanDesign module for at least one feature within the selected group
for a condition. If necessary, verify the contents of lifespan Rasters in LifespanDesign/Output/
Rasters/CONDITION/ (e.g., empty Rasters and Raster names must contain lf or ds to be recog-
nized).

• WARNING: Non-numeric values in data.

– Cause: Raised by the interpolation functions of the Interpolator class (.site_packages/
riverpy/cInterpolator.py) when the x data points that should get an interpolated y-value are
not numeric.

– Remedy: Check the condition flow duration and/or time duration curve and remove any non-numeric value
from the discharge columns.

• WARNING: Old logfile is locked [...].

– Cause: Raised by the logging_start(logfile_name) function (multiple classes) when the log-
files are locked by another process. The parenthesis [...] indicates the concerned run task.

– Remedy: Ensure that the logfiles of the concerned module are not opened in any other process or program.

• WARNING: PlantExisting.shp is corrupted or non-existent.

– Cause: Raised by the ProjectMaker/s20_plantings_delineation/’s main() function
when it could not process the existing plants shapefile.

– Remedy: Ensure that existing plants (ProjectMaker/ProjectName/Geodata/Shapefiles/
PlantExisting.shp) is correctly set up according to the descriptions in the wiki. However, this
raster is not absolutely required.

• WARNING: Substituting user-defined crit. lifespan (...) with

– Cause: Error raised by the ProjectMaker/s30_terrain_stabilization/’s main() function
when the user-defined critical lifespan for terrain stabilization does not exaclty correspond to the available
hydraulic Rasters defined for the provided Condition.

– Remedy: Ensure to only use lifespans defined for the provided Condition (cf. definition of flow duration
periods).

• WARNING: The provided path to Rasters for mapping is invalid. Using
templates instead.

– Cause: Raised by the Mapper() class in .site_packages/riverpy/cMapper.py when it could
not process the provided input Raster path.

– Remedy: If code changes were made, ensure that Mapper() received correct CONDITION and
map_type arguments. Otherwise, Mapper() will use the template Raster files located in
RiverArchitect/02_Maps/templates/Rasters/.

• WARNING: Volume value assignment failed.

– Cause: Raised by Write().write_volumes(self, ...) in .site_packages/riverpy/
cReachManager.py when it could not write volume (numbers) to a copy of the template sheet in
the output (template) workbook (VolumeAssessment/Output/CONDITION_volumes.xlsx or
VolumeAssessment/.templates/volume_template.xlsx).

– Remedy: Traceback earlier error and warning messages. Ensure that no other program
uses VolumeAssessment/Output/CONDITION_volumes.xlsx or VolumeAssessment/.
templates/volume_template.xlsx and that both workbooks have not been accidentally deleted.

187

https://github.com/RiverArchitect/RA_wiki/LifespanDesign

River Architect, Release latest

River Architect was developed in the Pasternack Lab for Watershed Hydrology, Geomorphology, and Ecohydraulics
at University of California at Davis, Department of Land, Air, and Water Resources.

River Architect is the result of research projects funded by

• The Yuba Water Agency (Marysville, California, USA) under Award #201016094 and Award #10446)

• The USDA National Institute of Food and Agriculture, Hatch project number CA-D-LAW-7034-H.

The scientific procedures integrated into River Architect are the result of a dedicated development team and many re-
searchers who contributed useful hints. Therefore, special thanks goes to Lukas Schmocker, Isabella Schalko, Virginia
Ruiz-Villanueva, Carmelo Juez, Fabian Friedl and John Stella for their inputs regarding wood introduction, side cavity
dynamics, sediment replenishment and riparian vegetation plantings in riverine environments.

188 Chapter 53. Warning messages

http://pasternack.ucdavis.edu/
https://www.yubawater.org/
https://nifa.usda.gov/

CHAPTER

FIFTYFOUR

DISCLAIMER

No warranty is expressed or implied regarding the usefulness or completeness of the information provided by River
Architect and its documentation (wiki). References to commercial products do not imply endorsement by the Authors
of River Architect. The concepts, materials, and methods used in the algorithms and described in the wiki are for
informational purposes only. The Authors have made substantial effort to ensure the accuracy of the algorithms and
the wiki, but science of prediction is uncertain and the Authors shall not be held liable, nor their employers or funding
sponsors, for calculations and/or decisions made on the basis of application of River Architect. The information is
provided “as is” and anyone who chooses to use the information is responsible for her or his own choices as to what
to do with the data and the individual is responsible for the results the follow from their decisions.

189

River Architect, Release latest

190 Chapter 54. DISCLAIMER

CHAPTER

FIFTYFIVE

DEVELOPMENT

• Principles & Requiremments

• Add a module to River Architect

– Use Python templates

– Bind the new module to the GUI

• Edit the Wiki

• Use git

The development of River Architect follows the Zen of Python, also known as PEP20.

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

The River Architect Wiki for developers assumes a basic understanding of Python3, object-oriented programming, the
markdown language and basics in HTML. In order to ensure quality, we test and debug new code before pushing it,
and we run spell checkers before updating the Wiki (albeit we cannot guarantee that the writing is 100 percent correct,
we do our best).

191

https://www.python.org/dev/peps/pep-0020/

River Architect, Release latest

192 Chapter 55. DEVELOPMENT

CHAPTER

FIFTYSIX

ADD A MODULE TO RIVER ARCHITECT

Overview

• Use Python templates

• Bind the new module to the GUI

• Full folder and file structure

New modules or code modifications should be pushed to the program repository https://github.com/RiverArchitect/
program (read more about using git).

River Architect has currently five master tabs (or modules) and three of them have slave-tabs (sub-modules): Lifespan,
Morphology, and Ecohydraulics. The development of a new module or sub-module follows the same standards and
varies only in the way how the tab is finally bound in the River Architect master GUI. For creating a new (sub) module,
do the following:

1. Have a look at River Architect (see folder and file structure) and think about the capacities that the new module
should have, and how it can be fitted in the existing framework (think twice before adding a new master tab).

2. Clone the template repository: git clone https://github.com/RiverArchitect/
development.git.

3. Frome the cloned repository, copy the folder RiverArchitect/development/moduleTEMPLATE/ to
RiverArchitect/moduleTEMPLATE/.

4. Rename RiverArchitect/moduleTEMPLATE/ to RiverArchitect/NEW_MODULE_NAME/ (obvi-
ously, replace NEW_MODULE_NAME with the name of the new module).

5. Edit and add the module files RiverArchitect/NEW_MODULE_NAME/cTEMPLATE.py and --
TEMPLATE_gui.py (see below descriptions of the module template).

6. Bind the new module to the River Architect master GUI (see below descriptions for binding a new module to
the River Architect master GUI).

193

https://github.com/RiverArchitect/program
https://github.com/RiverArchitect/program

River Architect, Release latest

56.1 Working with the module template

The River Architect development repository provides template file for creating a new module in the
moduleTEMPLATE/ directory:

• TEMPLATE_gui.py is a template of the actual GUI that will be shown in the new tab.

• cTEMPLATE.py is a template for writing new classes using geospatial analysis with arcpy.sa.

Inline comments guide through the scripts and their dependencies. Both scripts load all functions and load most of the
required packages from RiverArchitect/.site_packages/riverpy/fGlobal.py.

56.1.1 Using TEMPLATE_gui.py

The script contains tkinter classes to build the tab GUI. The first class is a PopUpWindow that may be useful
for inquiring complex user input (e.g., calculate a value). A good example of using complex user input within River
Architect is the River Builder input file creator.

class PopUpWindow(object):
def __init__(self, master):

...

The most relevant template class here is class MainGui(sg.RaModuleGui), which inherits the tab-slave
class RaModuleGui from RiverArchitect/slave_gui.py. All tabs must inherit RiverArchitect/
slave_gui.RaModuleGui, no matter if this will be a master or a slave tab. As such, all tabs inherit the following
class variables (relevant variables only are listed here):

• self.condition is a STR of a condition contained in RiverArchitect/01_Conditions/

• self.features is a cDef.FeatureDefinitions() object resulting from RiverArchitect/
LifespanDesign/.templates/threshold_values.xlsx (read more about features)

• self.reaches is a cDef.ReachDefinitions() object resulting from RiverArchitect/
ModifyTerrain/.templates/computation_extents.xlsx (read more about river reaches)

• self.units is a STR variable, which is either us (US customary) or si (SI Metric)

• self.ww is an INT variable defining the tab window width

• self.wh is an INT variable defining the tab window height

• self.wx is an INT variable defining the tab window x-position

• self.wy is an INT variable defining the tab window y-position

• self.xd is an INT variable defining the x-pad (pixel space around tkinter objects)

• self.yd is an INT variable defining the y-pad (pixel space around tkinter objects)

Moreover, the RaModuleGui class automatically creates a "Units" and a "Close" dropdown menu.

The MainGui(sg.RaModuleGui) class header (__init__() function) looks like this:

class MainGui(sg.RaModuleGui):
def __init__(self, from_master):

sg.RaModuleGui.__init__(self, from_master)
self.ww = 800 # window width
self.wh = 840 # window height

(continues on next page)

194 Chapter 56. Add a module to River Architect

https://github.com/RiverArchitect/development
https://effbot.org/tkinterbook/

River Architect, Release latest

(continued from previous page)

self.title = "TEMPLATE" # <---------------------- SET MODULE NAME
→˓HERE, BUT DO NOT CHANGE CLASS NAME

self.set_geometry(self.ww, self.wh, self.title)
... tkinter examples

We recommend modifying the __init__() function of new modules starting with the self.ww and self.wh
variables, which define the tab window width and height in pixels, respectively (try to avoid values larger than 1000
pixels). Most important and required edits are:

• the file name (rename TEMPLATE_gui.py to something like new_module_gui.py), and

• the window title defined with the self.title variable (see above code snippet, where "TEMPLATE" should
be renamed to something like "New Module").

Below self.title variable, the template provides some examples for using tkinter objects such as labels,
listboxes with scroll bars, buttons, checkbuttons, and drop-down menus. For tkinter beginners, we recommend to
carefully explore different tkinter objects (read more).

The MainGui.run_calculation() function illustrates the implementation of a geospatial calculator class (see
cTEMPLATE.py):

def run_calculation(self):
"""
Trigger a calculation with cTEMPLATE.TEMPLATE()
"""
geo_calc_object = cTEMPLATE.TEMPLATE()

inquire input raster name
dir2raster = askopenfilename(initialdir=".", title="Select input GeoTIFF

→˓raster",
filetypes=[('GeoTIFF', '*.tif;*.tiff')])

result = geo_calc_object.use_spatial_analyst_function(dir2raster)
geo_calc_object.clear_cache() # remove temporary calculation files

if not(result == -1):
showinfo("SUCCESS", "The result raster %s has been created." % result)

else:
showinfo("ERROR", "Something went wrong. Check the logfile and River

→˓Architect Troubleshooting Wiki.")

geo_calc_object is a cTEMPLATE.TEMPLATE() object that is locally created in the run_calculation()
function. It has a use_spatial_analyst_function that requires an input raster path to ap-
ply a (random) ArcGIS Spatial Analyst map algebra expression to that input raster. For this pur-
pose, the MainGui.run_calculation() function asks the user to define an input raster using
tkinters’s askopenfilename() function (imported from tkinter.filedialog). The line result =
geo_calc_object.use_spatial_analyst_function(dir2raster) passes the selected raster file path
(dir2raster) to the geospatial calculation function, which returns a string of the output raster if the calculation was
successful (otherwise, it returns -1). After the calculation, an info window pops up (showinfo(WINDOW_NAME,
MESSAGE) imported from tkinter.messagebox) and informs about the calculation success.

The MainGui.set_value() function illustrates the usage of the above mentioned PopUpWindow class (in the
same file TEMPLATE_gui.py) to modify a value. The usage in the template is somewhat meaningless; a more
reasonable value modification can be found in the Lifespan Design module where the user can modify the Manning’s
n roughness value (see applicaton).

def set_value(self):
sub_frame = PopUpWindow(self.master)

(continues on next page)

56.1. Working with the module template 195

https://effbot.org/tkinterbook/tkinter-index.htm#class-reference

River Architect, Release latest

(continued from previous page)

self.master.wait_window(sub_frame.top)
value = float(sub_frame.value)
showinfo("INFO", "You entered %s (whatever...)." % str(value))

The MainGui.set_value() function creates a sub-frame by instantiating a PopUpWindow object with
MainGui as master. While the PopUpWindow is open, the main window waits for user input in the
PopUpWindow (self.master.wait_window(sub_frame.top)). After closing the window, the function
retrieves the user-defined value with value = float(sub_frame.value). Finally, an info window pops up
(showinfo(WINDOW_NAME, MESSAGE) imported from tkinter.messagebox) and recalls the user-defined
value (well, this is trivial here . . .).

56.1.2 Using cTEMPLATE.py

The cTEMPLATE.TEMPLATE() class provides a useful frame for programming geospatial calculations, but none
of the template routines is obligatory (in contrast to the above GUI template. For using the template class, make the
following adaptations to the code block:

class TEMPLATE:
def __init__(self, *args, **kwargs):

"""
...
"""

Create a temporary cache folder for, e.g., geospatial analyses; use self.
→˓clear_cache() function to delete

self.cache = os.path.dirname(__file__) + "\\.cache%s\\" % str(random.
→˓randint(10000, 99999))

chk_dir(self.cache) # from fGlobal

Enable logger
self.logger = logging.getLogger("logfile")

• rename the class from TEMPLATE to something meaningful;

• modify the input arguments of the __init__(self, *args, **kwargs) function.

The cTEMPLATE.TEMPLATE() class initiates a self.logger variable to write calculation progress to a
logfile that is created as RiverArchitect/logfile.log when River Architect is called from the main
GUI. This logefile should be used at every critical step where erroneous user input may yield wrong or
no result. For example, if a user selects a raster file without valid data, the code should detect and
tell the user about the problem using precise try-except statements. The cTEMPLATE.TEMPLATE.
use_spatial_analyst_function(input_raster_path) function provides an example for the imple-
mentation of such behavior:

try:
self.logger.info(" >> loading raster %s ..." % str(input_raster_

→˓path))
in_ras = arcpy.Raster(input_raster_path)

except:
go here if the input_raster_path is invalid and write a USEFUL

→˓error message
self.logger.info("ERROR: Game over ... add this error message to RA_

→˓wiki/Troubleshooting")
return -1

196 Chapter 56. Add a module to River Architect

River Architect, Release latest

In this exemplary code snippet, the command self.logger.info(" >> loading raster %s ...
" % str(input_raster_path)) writes the raster input path to the console window and to the log-
file using self.logger.info(). If the next step fails (i.e., arcpy.Raster() cannot load the pro-
vided input_raster_path as raster), the user should be informed. This information is passed recorded
in the except: statement with self.logger.info("ERROR: Game over ... add this error
message to RA_wiki/Troubleshooting"), which ends with returning -1 (exits the function because the
raster is necessary for all other steps). It would be better to use more precise exception rules such as except
ValueError:, but we kept the broad “shotgun” approach with except: only because we encountered unex-
pected exception types using arcpy. A better and future way of error message logging in River Architect will be
to use self.logger.error() in the exception statement rather than self.logger.info(), which should
exclusively be used to log calculation progress. Important is to add error messages, as well as warning messages,
to the Troubleshooting Wiki (read more about extending the Wiki). Use warning messages when a function can still
work even though a variable assignment error occurred such as when an optional, additional raster is missing.

Finally, every class should close with a call function, where only the TEMPLATE string should be adapted to the new
class name:

def __call__(self, *args, **kwargs):
Object call should return class name, file location and class attributes

→˓(dir)
print("Class Info: <type> = TEMPLATE (%s)" % os.path.dirname(__file__))
print(dir(self))

More features of the template are provided with the inline comments in cTEMPLATE.py.

56.2 Binding a new tab (module) to the River Architect master GUI

New modules need to be bound to the master GUI, either as master-tab or as slave-tab. Both need to added to the
RiverArchitect/master_gui.py script in the RA_gui class’s __init__() function.

56.2.1 Binding a New Module with or without submodules

Assuming a new master tab with the name *NEW MODULE, optionally with New Sub Modules, should
to be added, which is located in RiverArchitect/NewModule/new_module_gui.py (or submodules
in RiverArchitect/NewSubModule1/new_sub1_gui.py and RiverArchitect/NewSubModule2/
new_sub2_gui.py, respectively), the following variables need to be complemented (attention: the list order is
important - new modules should only be appended at the end of lists):

• self.tab_names = ['Get Started', 'Lifespan', 'Morphology',
'Ecohydraulics', 'Project Maker', 'NEW MODULE']

• For adding slave (sub) tabs with names NEW SUB1 and NEW SUB2: + self.sub_tab_parents
= ['Lifespan', 'Morphology', 'Ecohydraulics', 'NEW MODULE'] + self.
sub_tab_names = [['Lifespan Design', 'Max Lifespan'], ['Modify Terrain',
'Volume Assessment'], ['Habitat Area (SHArC)', 'Stranding Risk'], ['NEW
SUB1', 'NEW SUB2', ... and so on]]

• self.tab_dir_names + No sub tabs: self.tab_dir_names= ['\\GetStarted\
\', ['\\LifespanDesign\\', '\\MaxLifespan\\'], ['\\ModifyTerrain\\
', '\\VolumeAssessment\\'], ['\\SHArC\\', '\\StrandingRisk\\'], '\\
ProjectMaker\\', '\\NewModule\\'] + With sub tabs located in RiverArchitect/
NewSubModule1/ and RiverArchitect/NewSubModule2/, respectively: self.tab_dir_names

56.2. Binding a new tab (module) to the River Architect master GUI 197

River Architect, Release latest

= ['\\GetStarted\\', ['\\LifespanDesign\\', '\\MaxLifespan\\'], ['\\
ModifyTerrain\\', '\\VolumeAssessment\\'], ['\\SHArC\\', '\\StrandingRisk\
\'], '\\ProjectMaker\\', ['\\NewSubModule1\\', '\\NewSubModule2\\']]

• self.tab_list + No sub tabs: self.tab_list= [GetStarted.welcome_gui.
MainGui(self.tab_container), ttk.Notebook(self.tab_container), ttk.
Notebook(self.tab_container), ttk.Notebook(self.tab_container),
ProjectMaker.project_maker_gui.MainGui(self.tab_container), NewModule.
new_module_gui.MainGui(self.tab_container)] + With sub tabs: self.
tab_list= [GetStarted.welcome_gui.MainGui(self.tab_container), ttk.
Notebook(self.tab_container), ttk.Notebook(self.tab_container), ttk.
Notebook(self.tab_container), ProjectMaker.project_maker_gui.MainGui(self.
tab_container), ttk.Notebook(self.tab_container)]

• With sub tabs: self.sub_tab_list = [[LifespanDesign.lifespan_design_gui.
FaGui(self.tabs['Lifespan']), MaxLifespan.action_gui.ActionGui(self.
tabs['Lifespan'])], [ModifyTerrain.modify_terrain_gui.
MainGui(self.tabs['Morphology']), VolumeAssessment.volume_gui.
MainGui(self.tabs['Morphology'])], [SHArC.sharc_gui.MainGui(self.
tabs['Ecohydraulics']), StrandingRisk.connect_gui.MainGui(self.
tabs['Ecohydraulics'])], [NewSubModule1.new_sub1_gui.MainGui(self.
tabs['NEW SUB1']), NewSubModule2.new_sub2_gui.MainGui(self.tabs['NEW
SUB2'])]]

56.2.2 Binding a New Sub-Module to an existing module

The following list indicates variables to be modified when a new sub-module (slave or sub-tab) is added to an existing
module. The example assumes the creation of a sub-tab called RiverCreator to the Morphology module.

• Verify that the Morphology tab is mentioned in self.sub_tab_parents = ['Lifespan',
'Morphology', 'Ecohydraulics', 'NEW MODULE']

• Add RIVER CREATOR to the second nested list in self.sub_tab_names = [['Lifespan
Design', 'Max Lifespan'], ['Modify Terrain', 'Volume Assessment', 'RIVER
CREATOR'], ['Habitat Area (SHArC)', 'Stranding Risk']]; the second nested list must
be chosen because Morphology is the second item in self.sub_tab_parents

• Assuming that the new module is located in RiverArchitect/RiverCreator, modify self.
tab_dir_names = ['\\GetStarted\\', ['\\LifespanDesign\\', '\\MaxLifespan\
\'], ['\\ModifyTerrain\\', '\\VolumeAssessment\\', '\\RiverCreator\\'],
['\\SHArC\\', '\\StrandingRisk\\'], '\\ProjectMaker\\', ['\\NewSubModule1\
\', '\\NewSubModule2\\']]

• Withe the asumption that the new River Creator GUI is located in RiverArchitect/RiverCreator/
rc_gui.py, modify self.sub_tab_list = [[LifespanDesign.lifespan_design_gui.
FaGui(self.tabs['Lifespan']), MaxLifespan.action_gui.ActionGui(self.
tabs['Lifespan'])], [ModifyTerrain.modify_terrain_gui.MainGui(self.
tabs['Morphology']), VolumeAssessment.volume_gui.MainGui(self.
tabs['Morphology']), RiverCreator.rc_gui.MainGui(self.tabs['River
Creator'])], [SHArC.sharc_gui.MainGui(self.tabs['Ecohydraulics']),
StrandingRisk.connect_gui.MainGui(self.tabs['Ecohydraulics'])]]

Please do not forget to update the wiki and test new code!

198 Chapter 56. Add a module to River Architect

CHAPTER

FIFTYSEVEN

FULL LIST OF FOLDERS AND FILES

This is the full list of files and folders in the RiverArchitect/program repository. Please update after adding
or deleting files. The file list can be generated (in Windows) with PowerShell: Enter Get-ChildItem -Path
D:\path-to-local-copy-of-RiverArchitect\program -Recurse and copy-paste the comand line
output.

RiverArchitect\program
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:38 AM .github
d----- 7/26/2019 11:39 AM .site_packages
d----- 7/26/2019 11:39 AM 00_Flows
d----- 7/26/2019 11:39 AM 01_Conditions
d----- 7/26/2019 11:39 AM 02_Maps
d----- 11/22/2019 10:17 AM StrandingRisk
d----- 7/26/2019 11:39 AM docs
d----- 11/19/2019 12:40 PM GetStarted
d----- 7/26/2019 11:39 AM LifespanDesign
d----- 7/26/2019 11:39 AM MaxLifespan
d----- 10/2/2019 9:57 AM ModifyTerrain
d----- 11/5/2019 1:57 PM ProjectMaker
d----- 10/2/2019 9:57 AM SHArC
d----- 11/25/2019 1:04 PM Tools
d----- 7/26/2019 11:39 AM VolumeAssessment
-a---- 11/13/2019 8:47 AM 22 .gitignore
-a---- 9/4/2019 5:04 PM 1540 LICENSE
-a---- 11/22/2019 10:17 AM 6458 master_gui.py
-a---- 7/26/2019 11:39 AM 5856 README.md
-a---- 11/4/2019 12:33 PM 11594 slave_gui.py
-a---- 7/26/2019 11:39 AM 619 Start_River_Architect.bat

RiverArchitect\program\.github
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:38 AM ISSUE_TEMPLATE

RiverArchitect\program\.github\ISSUE_TEMPLATE
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:38 AM 834 bug_report.md

(continues on next page)

199

River Architect, Release latest

(continued from previous page)

-a---- 7/26/2019 11:38 AM 126 custom.md
-a---- 7/26/2019 11:38 AM 595 feature_request.md

RiverArchitect\program\.site_packages
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM openpyxl
d----- 11/19/2019 12:40 PM riverpy
d----- 7/26/2019 11:39 AM templates
-a---- 7/26/2019 11:38 AM 23 info.md

RiverArchitect\program\.site_packages\openpyxl
---- TRUNCATED ---- DEPRECATED MODULE BINDINGS

RiverArchitect\program\.site_packages\riverpy
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 7131 cDefinitions.py
-a---- 7/26/2019 11:39 AM 4141 cFeatures.py
-a---- 7/26/2019 11:39 AM 5840 cFish.py
-a---- 11/19/2019 12:40 PM 19563 cFlows.py
-a---- 7/26/2019 11:39 AM 12334 cInputOutput.py
-a---- 7/26/2019 11:39 AM 2550 cInterpolator.py
-a---- 7/26/2019 11:39 AM 2470 cLogger.py
-a---- 7/26/2019 11:39 AM 10583 cMakeTable.py
-a---- 11/18/2019 2:11 PM 23510 cMapper.py
-a---- 8/6/2019 8:03 AM 2899 config.py
-a---- 7/26/2019 11:39 AM 9290 cReachManager.py
-a---- 7/26/2019 11:39 AM 4245 cThresholdDirector.py
-a---- 9/17/2019 10:03 AM 21388 fGlobal.py
-a---- 7/26/2019 11:39 AM 120 __init__.py

RiverArchitect\program\.site_packages\templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 70862 code_icon.ico
-a---- 11/19/2019 11:35 AM 134 credits.txt
-a---- 7/26/2019 11:39 AM 6172 empty.xlsx
-a---- 7/26/2019 11:39 AM 34208 Fish.xlsx
-a---- 7/26/2019 11:39 AM 40751 morphological_units.xlsx
-a---- 7/26/2019 11:39 AM 164 oups.txt

RiverArchitect\program\00_Flows
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM InputFlowSeries
d----- 11/21/2019 6:10 PM templates
-a---- 7/26/2019 11:39 AM 38 info.md

RiverArchitect\program\00_Flows\InputFlowSeries
Mode LastWriteTime Length Name
---- ------------- ------ ----

(continues on next page)

200 Chapter 57. Full list of folders and files

River Architect, Release latest

(continued from previous page)

-a---- 7/26/2019 11:39 AM 252121 flow_series_example_data.xlsx

RiverArchitect\program\00_Flows\templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 11/21/2019 6:10 PM 188246 disc_freq_template.xlsx
-a---- 7/26/2019 11:39 AM 205163 flow_duration_template.xlsx
-a---- 7/26/2019 11:39 AM 15163 flow_return_period_template.xlsx

RiverArchitect\program\01_Conditions
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM none
-a---- 7/26/2019 11:39 AM 13258925 20XX_sample.zip
-a---- 7/26/2019 11:39 AM 208 README.md

RiverArchitect\program\01_Conditions\none
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 111 info.txt
-a---- 7/26/2019 11:39 AM 60 __init__.py

RiverArchitect\program\02_Maps
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM templates

RiverArchitect\program\02_Maps\templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM Index
d----- 7/26/2019 11:39 AM legend
d----- 7/26/2019 11:39 AM rasters
d----- 7/29/2019 5:48 PM river_template.gdb
d----- 7/29/2019 5:48 PM scratch.gdb
d----- 7/26/2019 11:39 AM symbology
-a---- 7/26/2019 11:39 AM 475672 river_template.aprx
-a---- 7/26/2019 11:39 AM 4096 river_template.tbx

RiverArchitect\program\02_Maps\templates\Index
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM river_map_template
d----- 7/26/2019 11:39 AM river_template
d----- 7/26/2019 11:39 AM Thumbnail

RiverArchitect\program\02_Maps\templates\Index\river_map_template
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 75 log.txt

(continues on next page)

201

River Architect, Release latest

(continued from previous page)

-a---- 7/26/2019 11:39 AM 20 segments.gen
-a---- 7/26/2019 11:39 AM 200 segments_2
-a---- 7/26/2019 11:39 AM 1509 _0.cfs

RiverArchitect\program\02_Maps\templates\Index\river_template
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 71 log.txt
-a---- 7/26/2019 11:39 AM 20 segments.gen
-a---- 7/26/2019 11:39 AM 2580 segments_12
-a---- 7/26/2019 11:39 AM 2075 segments_z
-a---- 7/26/2019 11:39 AM 977 _10.cfs
-a---- 7/26/2019 11:39 AM 6183 _m.cfs
-a---- 7/26/2019 11:39 AM 673 _n.cfs
-a---- 7/26/2019 11:39 AM 9 _n_1.del
-a---- 7/26/2019 11:39 AM 807 _o.cfs
-a---- 7/26/2019 11:39 AM 688 _p.cfs
-a---- 7/26/2019 11:39 AM 9 _p_1.del
-a---- 7/26/2019 11:39 AM 837 _q.cfs
-a---- 7/26/2019 11:39 AM 688 _r.cfs
-a---- 7/26/2019 11:39 AM 9 _r_1.del
-a---- 7/26/2019 11:39 AM 805 _s.cfs
-a---- 7/26/2019 11:39 AM 688 _t.cfs
-a---- 7/26/2019 11:39 AM 9 _t_1.del
-a---- 7/26/2019 11:39 AM 849 _u.cfs
-a---- 7/26/2019 11:39 AM 789 _v.cfs
-a---- 7/26/2019 11:39 AM 805 _w.cfs
-a---- 7/26/2019 11:39 AM 804 _x.cfs
-a---- 7/26/2019 11:39 AM 737 _y.cfs
-a---- 7/26/2019 11:39 AM 9 _y_1.del
-a---- 7/26/2019 11:39 AM 973 _z.cfs
-a---- 7/26/2019 11:39 AM 9 _z_1.del

RiverArchitect\program\02_Maps\templates\Index\Thumbnail
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 0 indx
-a---- 7/26/2019 11:39 AM 4208 layers.jpg
-a---- 7/26/2019 11:39 AM 5833 layers12.jpg
-a---- 7/26/2019 11:39 AM 5611 layers2.jpg
-a---- 7/26/2019 11:39 AM 6006 layers22.jpg
-a---- 7/26/2019 11:39 AM 5851 layers32.jpg
-a---- 7/26/2019 11:39 AM 4823 layers5.jpg
-a---- 7/26/2019 11:39 AM 5789 layers7.jpg
-a---- 7/26/2019 11:39 AM 4346 map.jpg

RiverArchitect\program\02_Maps\templates\legend
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 1120768 legend.ServerStyle
-a---- 7/26/2019 11:39 AM 1622016 legend.style

RiverArchitect\program\02_Maps\templates\rasters
(continues on next page)

202 Chapter 57. Full list of folders and files

River Architect, Release latest

(continued from previous page)

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM ds_bio_s0
d----- 7/26/2019 11:39 AM ds_elj_dwc
d----- 7/26/2019 11:39 AM ds_finese_d15
d----- 7/26/2019 11:39 AM ds_finese_d85
d----- 7/26/2019 11:39 AM ds_sidec
d----- 7/26/2019 11:39 AM ds_sidech110
d----- 7/26/2019 11:39 AM ds_sym_d
d----- 7/26/2019 11:39 AM ds_widen
d----- 7/26/2019 11:39 AM lf_sym
-a---- 7/29/2019 5:48 PM 1400 ds_bio_s0.aux.xml
-a---- 7/29/2019 5:48 PM 1383 ds_elj_dwc.aux.xml
-a---- 7/29/2019 5:48 PM 1413 ds_finese_d15.aux.xml
-a---- 7/29/2019 5:48 PM 1387 ds_finese_d85.aux.xml
-a---- 7/29/2019 5:48 PM 1487 ds_sidec.aux.xml
-a---- 7/29/2019 5:48 PM 1407 ds_sidech110.aux.xml
-a---- 7/29/2019 5:48 PM 2335 ds_sym_D.aux.xml
-a---- 7/29/2019 5:48 PM 504 ds_widen.aux.xml
-a---- 7/26/2019 11:39 AM 1274552 layout_lf.xml
-a---- 7/29/2019 5:48 PM 2316 lf_sym.aux.xml

RiverArchitect\program\02_Maps\templates\rasters\ds_bio_s0
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 98486 w001001.adf
-a---- 7/26/2019 11:39 AM 428 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_elj_dwc
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 170 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 49286 w001001.adf
-a---- 7/26/2019 11:39 AM 236 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_finese_d15
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 170 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 98486 w001001.adf
-a---- 7/26/2019 11:39 AM 428 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_finese_d85
(continues on next page)

203

River Architect, Release latest

(continued from previous page)

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 170 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 49286 w001001.adf
-a---- 7/26/2019 11:39 AM 236 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_sidec
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/29/2019 5:48 PM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 8 vat.adf
-a---- 7/26/2019 11:39 AM 1662 w001001.adf
-a---- 7/26/2019 11:39 AM 428 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_sidech110
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 49286 w001001.adf
-a---- 7/26/2019 11:39 AM 236 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_sym_d
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/29/2019 5:48 PM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 32886 w001001.adf
-a---- 7/26/2019 11:39 AM 172 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\ds_widen
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/26/2019 11:39 AM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 8 vat.adf
-a---- 7/26/2019 11:39 AM 98486 w001001.adf
-a---- 7/26/2019 11:39 AM 428 w001001x.adf

RiverArchitect\program\02_Maps\templates\rasters\lf_sym
(continues on next page)

204 Chapter 57. Full list of folders and files

River Architect, Release latest

(continued from previous page)

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 32 dblbnd.adf
-a---- 7/26/2019 11:39 AM 308 hdr.adf
-a---- 7/29/2019 5:48 PM 358 prj.adf
-a---- 7/26/2019 11:39 AM 32 sta.adf
-a---- 7/26/2019 11:39 AM 98486 w001001.adf
-a---- 7/26/2019 11:39 AM 428 w001001x.adf

RiverArchitect\program\02_Maps\templates\river_template.gdb
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 110 a00000001.gdbindexes
-a---- 7/26/2019 11:39 AM 302 a00000001.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000001.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000001.TablesByName.atx
-a---- 7/26/2019 11:39 AM 2055 a00000002.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000002.gdbtablx
-a---- 7/26/2019 11:39 AM 42 a00000003.gdbindexes
-a---- 7/26/2019 11:39 AM 525 a00000003.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000003.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000004.CatItemsByPhysicalName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000004.CatItemsByType.atx
-a---- 7/26/2019 11:39 AM 4118 a00000004.FDO_UUID.atx
-a---- 7/26/2019 11:39 AM 310 a00000004.gdbindexes
-a---- 7/26/2019 11:39 AM 1712 a00000004.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000004.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000004.spx
-a---- 7/26/2019 11:39 AM 12310 a00000005.CatItemTypesByName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000005.CatItemTypesByParentTypeID.
→˓atx
-a---- 7/26/2019 11:39 AM 4118 a00000005.CatItemTypesByUUID.atx
-a---- 7/26/2019 11:39 AM 296 a00000005.gdbindexes
-a---- 7/26/2019 11:39 AM 2074 a00000005.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000005.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByDestinationID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByOriginID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByType.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.FDO_UUID.atx
-a---- 7/26/2019 11:39 AM 318 a00000006.gdbindexes
-a---- 7/26/2019 11:39 AM 190 a00000006.gdbtable
-a---- 7/26/2019 11:39 AM 32 a00000006.gdbtablx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByBackwardLabel.
→˓atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.
→˓CatRelTypesByDestItemTypeID.atx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByForwardLabel.
→˓atx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.
→˓CatRelTypesByOriginItemTypeID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.CatRelTypesByUUID.atx
-a---- 7/26/2019 11:39 AM 602 a00000007.gdbindexes
-a---- 7/26/2019 11:39 AM 3479 a00000007.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000007.gdbtablx
-a---- 7/26/2019 11:39 AM 4 gdb

(continues on next page)

205

River Architect, Release latest

(continued from previous page)

-a---- 7/26/2019 11:39 AM 400 timestamps

RiverArchitect\program\02_Maps\templates\scratch.gdb
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 110 a00000001.gdbindexes
-a---- 7/26/2019 11:39 AM 302 a00000001.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000001.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000001.TablesByName.atx
-a---- 7/26/2019 11:39 AM 2055 a00000002.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000002.gdbtablx
-a---- 7/26/2019 11:39 AM 42 a00000003.gdbindexes
-a---- 7/26/2019 11:39 AM 525 a00000003.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000003.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000004.CatItemsByPhysicalName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000004.CatItemsByType.atx
-a---- 7/26/2019 11:39 AM 4118 a00000004.FDO_UUID.atx
-a---- 7/26/2019 11:39 AM 310 a00000004.gdbindexes
-a---- 7/26/2019 11:39 AM 1712 a00000004.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000004.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000004.spx
-a---- 7/26/2019 11:39 AM 12310 a00000005.CatItemTypesByName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000005.CatItemTypesByParentTypeID.
→˓atx
-a---- 7/26/2019 11:39 AM 4118 a00000005.CatItemTypesByUUID.atx
-a---- 7/26/2019 11:39 AM 296 a00000005.gdbindexes
-a---- 7/26/2019 11:39 AM 2074 a00000005.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000005.gdbtablx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByDestinationID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByOriginID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.CatRelsByType.atx
-a---- 7/26/2019 11:39 AM 4118 a00000006.FDO_UUID.atx
-a---- 7/26/2019 11:39 AM 318 a00000006.gdbindexes
-a---- 7/26/2019 11:39 AM 190 a00000006.gdbtable
-a---- 7/26/2019 11:39 AM 32 a00000006.gdbtablx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByBackwardLabel.
→˓atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.
→˓CatRelTypesByDestItemTypeID.atx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByForwardLabel.
→˓atx
-a---- 7/26/2019 11:39 AM 12310 a00000007.CatRelTypesByName.atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.
→˓CatRelTypesByOriginItemTypeID.atx
-a---- 7/26/2019 11:39 AM 4118 a00000007.CatRelTypesByUUID.atx
-a---- 7/26/2019 11:39 AM 602 a00000007.gdbindexes
-a---- 7/26/2019 11:39 AM 3479 a00000007.gdbtable
-a---- 7/26/2019 11:39 AM 5152 a00000007.gdbtablx
-a---- 7/26/2019 11:39 AM 4 gdb
-a---- 7/26/2019 11:39 AM 400 timestamps

RiverArchitect\program\02_Maps\templates\symbology
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 7666 LifespanRasterSymbology.lyrx

(continues on next page)

206 Chapter 57. Full list of folders and files

River Architect, Release latest

(continued from previous page)

RiverArchitect\program\StrandingRisk
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 8/20/2019 12:22 PM .templates
-a---- 11/21/2019 6:10 PM 28031 cConnectivityAnalysis.py
-a---- 11/22/2019 10:17 AM 16505 cGraph.py
-a---- 11/19/2019 12:40 PM 12408 connect_gui.py
-a---- 11/19/2019 12:40 PM 4199 cRatingCurves.py
-a---- 7/26/2019 11:39 AM 84 __init__.py

RiverArchitect\program\StrandingRisk\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 8/20/2019 12:22 PM 191729 disconnected_area_template.xlsx

RiverArchitect\program\docs
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 3358 CODE_OF_CONDUCT.md
-a---- 7/26/2019 11:39 AM 7504 CONTRIBUTING.md
-a---- 7/26/2019 11:39 AM 802 PULL_REQUEST_TEMPLATE.md

RiverArchitect\program\GetStarted
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
-a---- 11/19/2019 12:40 PM 18968 cConditionCreator.py
-a---- 7/26/2019 11:39 AM 7321 cDetrendedDEM.py
-a---- 7/26/2019 11:39 AM 4387 cMakeInp.py
-a---- 7/26/2019 11:39 AM 8722 cMorphUnits.py
-a---- 8/20/2019 12:22 PM 19556 cWaterLevel.py
-a---- 7/26/2019 11:39 AM 3542 fSubCondition.py
-a---- 10/30/2019 4:27 PM 4851 popup_align_rasters.py
-a---- 11/4/2019 10:43 AM 10762 popup_analyze_q.py
-a---- 10/30/2019 4:27 PM 18197 popup_create_c.py
-a---- 9/17/2019 10:19 AM 7493 popup_create_c_sub.py
-a---- 7/26/2019 11:39 AM 4329 popup_make_inp.py
-a---- 9/17/2019 10:19 AM 13449 popup_populate_c.py
-a---- 10/30/2019 4:27 PM 6226 welcome_gui.py
-a---- 7/26/2019 11:39 AM 80 __init__.py

RiverArchitect\program\GetStarted\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 143253 welcome.gif

RiverArchitect\program\LifespanDesign
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 11/25/2019 6:43 PM .templates

(continues on next page)

207

River Architect, Release latest

(continued from previous page)

d----- 7/26/2019 11:39 AM Output
-a---- 10/24/2019 2:47 PM 53673 cLifespanDesignAnalysis.py
-a---- 10/29/2019 6:17 PM 10816 cParameters.py
-a---- 7/26/2019 11:39 AM 5776 cReadInpLifespan.py
-a---- 10/23/2019 3:48 PM 16584 feature_analysis.py
-a---- 11/25/2019 4:10 PM 21688 lifespan_design_gui.py
-a---- 7/26/2019 11:39 AM 113 __init__.py

RiverArchitect\program\LifespanDesign\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 703 mapping.inp
-a---- 7/26/2019 11:39 AM 773 mapping_full.inp
-a---- 7/26/2019 11:39 AM 11323 prepare_map_coordinates.xlsx
-a---- 11/25/2019 4:10 PM 23190 threshold_values.xlsx

RiverArchitect\program\LifespanDesign\Output
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM Rasters

RiverArchitect\program\LifespanDesign\Output\Rasters
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 58 __init__.py

RiverArchitect\program\MaxLifespan
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
d----- 7/26/2019 11:39 AM Output
-a---- 11/25/2019 4:11 PM 14301 action_gui.py
-a---- 7/26/2019 11:39 AM 2934 action_planner.py
-a---- 7/26/2019 10:50 AM 11193 cActionAssessment.py
-a---- 7/26/2019 11:39 AM 3558 cFeatureActions.py
-a---- 7/26/2019 11:39 AM 102 __init__.py

RiverArchitect\program\MaxLifespan\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM rasters
-a---- 7/26/2019 11:39 AM 704 mapping.inp
-a---- 7/26/2019 11:39 AM 11323 prepare_map_coordinates.xlsx

RiverArchitect\program\MaxLifespan\.templates\rasters
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 91 zeros.tfw
-a---- 7/26/2019 11:39 AM 9445 zeros.tif
-a---- 7/26/2019 11:39 AM 364 zeros.tif.aux.xml

(continues on next page)

208 Chapter 57. Full list of folders and files

River Architect, Release latest

(continued from previous page)

RiverArchitect\program\MaxLifespan\Output
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM Rasters

RiverArchitect\program\MaxLifespan\Output\Rasters
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\ModifyTerrain
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
d----- 7/26/2019 11:39 AM Output
d----- 7/26/2019 11:39 AM RiverBuilder
-a---- 7/26/2019 10:39 AM 12435 cModifyTerrain.py
-a---- 7/26/2019 11:39 AM 1941 cRiverBuilder.py
-a---- 7/26/2019 11:39 AM 12125 cRiverBuilderConstruct.py
-a---- 8/6/2019 8:03 AM 13861 modify_terrain_gui.py
-a---- 7/26/2019 11:39 AM 3777 riverbuilder_input_example.txt
-a---- 9/17/2019 10:27 AM 15650 sub_gui_rb.py
-a---- 7/26/2019 11:39 AM 87 __init__.py

RiverArchitect\program\ModifyTerrain\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 382805 chnl_xs_parameters.gif
-a---- 7/26/2019 11:39 AM 10681 computation_extents.xlsx
-a---- 7/26/2019 11:39 AM 1024000 determine_extents.mxd
-a---- 7/26/2019 11:39 AM 593 determine_extents.xml
-a---- 7/26/2019 11:39 AM 704 mapping.inp
-a---- 7/26/2019 11:39 AM 11323 prepare_map_coordinates.xlsx

RiverArchitect\program\ModifyTerrain\Output
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM Grade
d----- 7/26/2019 11:39 AM RiverBuilder
d----- 7/26/2019 11:39 AM Widen

RiverArchitect\program\ModifyTerrain\Output\Grade
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\ModifyTerrain\Output\RiverBuilder
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

(continues on next page)

209

River Architect, Release latest

(continued from previous page)

RiverArchitect\program\ModifyTerrain\Output\Widen
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\ModifyTerrain\RiverBuilder
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM messages
-a---- 7/26/2019 11:39 AM 45428 riverbuilder.r
-a---- 7/26/2019 11:39 AM 3117 RiverBuilderRenderer.py

RiverArchitect\program\ModifyTerrain\RiverBuilder\messages
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 537 chnl_xs_pts.txt
-a---- 7/26/2019 11:39 AM 391 d50.txt
-a---- 7/26/2019 11:39 AM 730 datum.txt
-a---- 7/26/2019 11:39 AM 81 dy.txt
-a---- 7/26/2019 11:39 AM 292 floodplain_outer_height.txt
-a---- 7/26/2019 11:39 AM 270 h_bf.txt
-a---- 7/26/2019 11:39 AM 381 length.txt
-a---- 7/26/2019 11:39 AM 935 sub_curvature.txt
-a---- 7/26/2019 11:39 AM 285 sub_floodplain_l.txt
-a---- 7/26/2019 11:39 AM 150 sub_floodplain_r.txt
-a---- 7/26/2019 11:39 AM 568 sub_meander.txt
-a---- 7/26/2019 11:39 AM 149 sub_thalweg.txt
-a---- 7/26/2019 11:39 AM 667 sub_w_bf.txt
-a---- 7/26/2019 11:39 AM 204 s_valley.txt
-a---- 7/26/2019 11:39 AM 572 taux.txt
-a---- 7/26/2019 11:39 AM 300 terrace_outer_height.txt
-a---- 7/26/2019 11:39 AM 1391 user_functions.txt
-a---- 7/26/2019 11:39 AM 150 w_bf.txt
-a---- 7/26/2019 11:39 AM 431 w_bf_min.txt
-a---- 7/26/2019 11:39 AM 343 w_boundary.txt
-a---- 7/26/2019 11:39 AM 831 w_floodplain.txt
-a---- 7/26/2019 11:39 AM 419 w_terrace.txt
-a---- 7/26/2019 11:39 AM 585 xs_shape.txt
-a---- 7/26/2019 11:39 AM 553 x_res.txt

RiverArchitect\program\ProjectMaker
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/29/2019 5:48 PM .templates
-a---- 10/2/2019 9:57 AM 10092 cSHArC.py
-a---- 7/26/2019 11:39 AM 4245 fFunctions.py
-a---- 11/25/2019 4:13 PM 34810 project_maker_gui.py
-a---- 11/19/2019 9:32 AM 11784 s20_plantings_delineation.py
-a---- 11/19/2019 9:43 AM 8778 s21_plantings_stabilization.py
-a---- 10/24/2019 2:19 PM 11928 s30_terrain_stabilization.py
-a---- 11/12/2019 2:21 PM 8488 s40_compare_sharea.py
-a---- 7/26/2019 11:39 AM 217 __init__.py

(continues on next page)

210 Chapter 57. Full list of folders and files

River Architect, Release latest

(continued from previous page)

RiverArchitect\program\ProjectMaker\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 11/25/2019 4:08 PM Project_vii_TEMPLATE
-a---- 7/26/2019 11:39 AM 5 area_dummy.cpg
-a---- 7/26/2019 11:39 AM 118 area_dummy.dbf
-a---- 7/26/2019 11:39 AM 132 area_dummy.sbn
-a---- 7/26/2019 11:39 AM 116 area_dummy.sbx
-a---- 7/26/2019 11:39 AM 220 area_dummy.shp
-a---- 7/26/2019 11:39 AM 108 area_dummy.shx

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 11/19/2019 10:27 AM Geodata
d----- 7/26/2019 11:39 AM Index
d----- 10/30/2019 5:57 PM ProjectMaps.gdb
d----- 11/19/2019 9:41 AM Quantities
-a---- 11/7/2019 5:51 PM 203109 ProjectMaps.aprx
-a---- 4/26/2019 9:43 AM 4096 ProjectMaps.tbx
-a---- 11/25/2019 4:07 PM 35894 Project_assessment_vii.xlsx

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Geodata
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 11/19/2019 9:12 AM Rasters
d----- 11/19/2019 9:12 AM Shapefiles
-a---- 7/26/2019 11:39 AM 20814 SHArea_evaluation_template_si.xlsx
-a---- 7/26/2019 11:39 AM 20797 SHArea_evaluation_template_us.xlsx

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Geodata\Rasters
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 11/19/2019 9:12 AM 10 __init__.py

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Geodata\Shapefiles
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 11/19/2019 9:12 AM 10 __init__.py

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Index
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 11/5/2019 1:57 PM ProjectMaps
d----- 7/26/2019 11:39 AM Thumbnail

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Index\ProjectMaps
Mode LastWriteTime Length Name
---- ------------- ------ ----

(continues on next page)

211

River Architect, Release latest

(continued from previous page)

-a---- 4/26/2019 10:18 AM 20 segments.gen
-a---- 4/26/2019 10:18 AM 1067 segments_9
-a---- 4/26/2019 9:43 AM 1122 _1.cfs
-a---- 4/26/2019 9:43 AM 633 _2.cfs
-a---- 4/26/2019 10:17 AM 669 _3.cfs
-a---- 4/26/2019 10:18 AM 9 _3_1.del
-a---- 4/26/2019 10:17 AM 812 _4.cfs
-a---- 4/26/2019 10:18 AM 708 _5.cfs
-a---- 4/26/2019 10:18 AM 9 _5_1.del
-a---- 4/26/2019 10:18 AM 806 _6.cfs

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Index\Thumbnail
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 4/26/2019 10:17 AM 0 indx
-a---- 4/26/2019 10:18 AM 1827 layers.jpg

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\ProjectMaps.gdb
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 4/26/2019 9:43 AM 110 a00000001.gdbindexes
-a---- 10/25/2019 8:54 AM 338 a00000001.gdbtable
-a---- 10/25/2019 8:54 AM 5152 a00000001.gdbtablx
-a---- 10/25/2019 8:54 AM 4118 a00000001.TablesByName.atx
-a---- 4/26/2019 9:43 AM 2055 a00000002.gdbtable
-a---- 4/26/2019 9:43 AM 5152 a00000002.gdbtablx
-a---- 4/26/2019 9:43 AM 42 a00000003.gdbindexes
-a---- 4/26/2019 9:43 AM 525 a00000003.gdbtable
-a---- 4/26/2019 9:43 AM 5152 a00000003.gdbtablx
-a---- 10/25/2019 8:54 AM 4118 a00000004.CatItemsByPhysicalName.atx
-a---- 10/25/2019 8:54 AM 4118 a00000004.CatItemsByType.atx
-a---- 10/25/2019 8:54 AM 4118 a00000004.FDO_UUID.atx
-a---- 10/25/2019 8:54 AM 8536 a00000004.freelist
-a---- 4/26/2019 9:43 AM 310 a00000004.gdbindexes
-a---- 10/25/2019 8:54 AM 24787 a00000004.gdbtable
-a---- 10/25/2019 8:54 AM 5152 a00000004.gdbtablx
-a---- 10/25/2019 8:54 AM 4118 a00000004.spx
-a---- 4/26/2019 9:43 AM 12310 a00000005.CatItemTypesByName.atx
-a---- 4/26/2019 9:43 AM 4118 a00000005.CatItemTypesByParentTypeID.
→˓atx
-a---- 4/26/2019 9:43 AM 4118 a00000005.CatItemTypesByUUID.atx
-a---- 4/26/2019 9:43 AM 296 a00000005.gdbindexes
-a---- 4/26/2019 9:43 AM 2074 a00000005.gdbtable
-a---- 4/26/2019 9:43 AM 5152 a00000005.gdbtablx
-a---- 10/25/2019 8:54 AM 4118 a00000006.CatRelsByDestinationID.atx
-a---- 10/25/2019 8:54 AM 4118 a00000006.CatRelsByOriginID.atx
-a---- 10/25/2019 8:54 AM 4118 a00000006.CatRelsByType.atx
-a---- 10/25/2019 8:54 AM 4118 a00000006.FDO_UUID.atx
-a---- 4/26/2019 9:43 AM 318 a00000006.gdbindexes
-a---- 10/25/2019 8:54 AM 263 a00000006.gdbtable
-a---- 10/25/2019 8:54 AM 5152 a00000006.gdbtablx
-a---- 4/26/2019 9:43 AM 12310 a00000007.CatRelTypesByBackwardLabel.
→˓atx
-a---- 4/26/2019 9:43 AM 4118 a00000007.
→˓CatRelTypesByDestItemTypeID.atx

(continues on next page)

212 Chapter 57. Full list of folders and files

River Architect, Release latest

(continued from previous page)

-a---- 4/26/2019 9:43 AM 12310 a00000007.CatRelTypesByForwardLabel.
→˓atx
-a---- 4/26/2019 9:43 AM 12310 a00000007.CatRelTypesByName.atx
-a---- 4/26/2019 9:43 AM 4118 a00000007.
→˓CatRelTypesByOriginItemTypeID.atx
-a---- 4/26/2019 9:43 AM 4118 a00000007.CatRelTypesByUUID.atx
-a---- 4/26/2019 9:43 AM 602 a00000007.gdbindexes
-a---- 4/26/2019 9:43 AM 3479 a00000007.gdbtable
-a---- 4/26/2019 9:43 AM 5152 a00000007.gdbtablx
-a---- 10/25/2019 8:54 AM 66 a00000009.gdbindexes
-a---- 10/25/2019 8:54 AM 168 a00000009.gdbtable
-a---- 10/25/2019 8:54 AM 5152 a00000009.gdbtablx
-a---- 4/26/2019 9:43 AM 4 gdb
-a---- 10/25/2019 8:54 AM 400 timestamps

RiverArchitect\program\ProjectMaker\.templates\Project_vii_TEMPLATE\Quantities
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 11/19/2019 9:12 AM 10 __init__.py

RiverArchitect\program\SHArC
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
d----- 7/26/2019 11:39 AM CHSI
d----- 7/26/2019 11:39 AM HSI
d----- 7/26/2019 11:39 AM SHArea
-a---- 11/21/2019 6:14 PM 38809 cHSI.py
-a---- 10/22/2019 2:31 PM 32273 sharc_gui.py
-a---- 7/26/2019 11:12 AM 17490 sub_gui_covhsi.py
-a---- 10/30/2019 5:10 PM 9689 sub_gui_hhsi.py
-a---- 7/26/2019 11:39 AM 122 __init__.py

RiverArchitect\program\SHArC\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 242416 CONDITION_QvsA_template_si.xlsx
-a---- 7/26/2019 11:39 AM 242653 CONDITION_QvsA_template_us.xlsx
-a---- 7/26/2019 11:39 AM 17940 CONDITION_sharea_template_si.xlsx
-a---- 7/26/2019 11:39 AM 17923 CONDITION_sharea_template_us.xlsx
-a---- 7/26/2019 11:39 AM 6172 empty.xlsx

RiverArchitect\program\SHArC\CHSI
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\SHArC\HSI
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

(continues on next page)

213

River Architect, Release latest

(continued from previous page)

RiverArchitect\program\SHArC\SHArea
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

RiverArchitect\program\Tools
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
-a---- 11/25/2019 1:05 PM 6547 cHydraulic.py
-a---- 7/26/2019 11:39 AM 8790 cInputOutput.py
-a---- 11/25/2019 1:05 PM 6126 cPoolRiffle.py
-a---- 11/25/2019 1:05 PM 8129 fTools.py
-a---- 11/25/2019 1:05 PM 3112 make_annual_flow_duration.py
-a---- 11/25/2019 1:05 PM 1687 make_annual_peak.py
-a---- 7/26/2019 11:39 AM 1554 morphology_designer.py
-a---- 10/30/2019 12:49 PM 1218 rename_files.py
-a---- 7/26/2019 11:39 AM 137 run_make_annual_flow_duration.bat
-a---- 7/26/2019 11:39 AM 132 run_make_d2w.bat
-a---- 7/26/2019 11:39 AM 124 run_make_det.bat
-a---- 7/26/2019 11:39 AM 124 run_make_det_gen.bat
-a---- 7/26/2019 11:39 AM 126 run_make_mu.bat
-a---- 7/26/2019 11:39 AM 147 run_morphology_designer.bat

RiverArchitect\program\Tools\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 11618 annual_peak_template.xlsx
-a---- 7/26/2019 11:39 AM 20867 flow_duration_template.xlsx
-a---- 7/26/2019 11:39 AM 11763 input.xlsx
-a---- 7/26/2019 11:39 AM 13784 output.xlsx

RiverArchitect\program\VolumeAssessment
Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 7/26/2019 11:39 AM .templates
d----- 7/26/2019 11:39 AM Output
-a---- 11/21/2019 6:07 PM 10217 cVolumeAssessment.py
-a---- 7/26/2019 11:35 AM 7013 volume_gui.py
-a---- 7/26/2019 11:39 AM 79 __init__.py

RiverArchitect\program\VolumeAssessment\.templates
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 10125 volumes_template.xlsx

RiverArchitect\program\VolumeAssessment\Output
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a---- 7/26/2019 11:39 AM 62 __init__.py

214 Chapter 57. Full list of folders and files

	Installation
	Installation with Git Bash/GUI
	Update with Git Bash/GUI (re- pull)
	Launch River Architect

	Package structure, requirements and logfiles
	File structure
	Program environment setup and batchfile modification
	Requirements and dependencies
	Logfiles

	Get Started and Signposts
	Get Started
	Create New Condition
	Populate Condition
	Create a spatial subset of a Condition
	Analyze Flows
	Generate Input File(s) (.inp)
	Map extent input definition files
	Align Input Rasters

	Geofile (Raster) conventions
	Manual input data preparation
	Feature lifespan and design assessment
	Introduction to lifespan and design mapping
	Quick GUIde to lifespan and design maps
	Interface and choice of features
	Input: Condition and preparation of Rasters
	Input: The threshold values workbook threshold_values.xlsx and calculation hierarchy
	Input: Optional arguments
	Run
	Alternative run options
	Output

	Maximum Lifespan Assessment (MaxLifespan)
	Introduction to maxium (best) lifespan mapping
	Quick GUIde to maximum lifespan maps
	Main window set-up and run
	Alternative run options
	Output
	Quit module and logfiles

	Working principle
	Code modification: Add feature sets for maximum lifespan maps
	River Reach Definitions
	Modify Terrain (terraforming)
	Introduction
	Quick GUIde to terrain modifications
	Main window set-up and run
	Input: Set Reaches
	Input: Set Condition

	Threshold value-based terraforming: Widening and Grading options
	Run
	Alternative run options
	Raster Output
	Mapping
	Working principles
	Code modification: Add routines for automated DEM modification

	River Builder
	River Builder
	Introduction to River Builder
	Create Input Files
	Select Input Files
	Run River Builder within River Architect
	Output
	About
	Volume Change Assessment
	Introduction
	Quick GUIde to Volume Assessment
	Main window set-up and run
	Input: Set Reaches
	Mapping
	Run
	Output

	Working principles
	Code modification: Change sensitivity threshold (lod) for terrain modification detection
	Stranding Risk Assessment
	Introduction to Stranding Risk Module
	Quick GUIde to Stranding Risk Assessment
	Defining Travel Thresholds
	Methodology
	Interpolating Hydraulic Rasters
	Escape Route Calculations
	Calculating Disconnected Habitat Area
	Determining Qdisconnect
	Disconnection Frequencies
	Estimating Ramping Rates

	References
	Project Maker
	Introduction to the Project Maker module
	Quick GUIde to a project assessment
	Prerequisites
	Main window set-up and run
	Input: Variables and automatically generated files
	Input: Project Area Polygon shapefile
	Input: Plantings shapefiles

	Cost quantity assessment and the cost master workbook
	Terraforming
	Vegetation plantings and supporting features
	Stabilize terrain
	Manual placement of nature-based engineering features
	Other civil engineering works
	Markups, permitting, and other costs

	Mapping of construction elements
	Ecological benefit asessment (Calculate SHArea)
	Additional input and requirements
	Run SHArea calculation
	Output

	River Architect Tools
	Main Tool scripts
	Class and Function files
	Error messages and Troubleshooting
	Known issues
	How to trace Error and Warning messages
	Error and Warning message generation
	Error messages
	Warning messages
	DISCLAIMER
	DEVELOPMENT
	Add a module to River Architect
	Working with the module template
	Binding a new tab (module) to the River Architect master GUI

	Full list of folders and files

